

Optimizing Energy Consumption and Parallel Performance for Static and Dynamic Betweenness Centrality using GPUs Adam McLaughlin, Jason Riedy, and David A. Bader

Georgia ©ollege of

Tech Computing
Computational Science and Engineering

Motivation

- Real world graphs are challenging to process
- Enormous
- Networks cannot be manually inspected
- Varying structural properties

- Small-world, scale-free, meshes, road networks
- Not a one-size fits all problem
- Unpredictable
- Rapidly change over time
- Data dependent memory access patterns

Motivation

- Graphs are no longer processed by supercomputers alone
- Embedded systems
- Computer vision
- Mobile devices
- Spam detection
- Systems are becoming constrained by power and energy
- High demand for work-efficient implementations
- Goal: Maximize performance per Watt using GPUs

Betweenness Centrality

- Determine the importance of a vertex in a network
- Requires the solution of the APSP problem
- Computationally demanding
- $O(m n)$ time complexity

Applications

- Deployment of detection devices in communication networks [Bye et. al]
- Analyzing brain networks [Rubinov and Sporns]
- Sexual networks and AIDS
- Identifying key actors in terrorist networks
- Transportation networks

Defining Betweenness Centrality

- Formally, the BC score of a vertex is defined as:

$$
B C(v)=\sum_{s \neq \mathrm{t} \neq \mathrm{v}} \frac{\sigma_{s t}(v)}{\sigma_{s t}}
$$

- $\sigma_{s t}$ is the number of shortest paths from s to t
- $\sigma_{s t}(v)$ is the number of those paths passing through v

$$
\begin{aligned}
& \sigma_{s t}=2 \\
& \sigma_{s t}(v)=1
\end{aligned}
$$

Brandes's Algorithm

- Fastest known sequential algorithm
- Recursive relationship between BC scores contributed by a single vertex ("root")
- Dependency:

$$
\delta_{s}(v)=\sum_{w \in \operatorname{succ}(v)} \frac{\sigma_{s v}}{\sigma_{s w}}\left(1+\delta_{s}(w)\right)
$$

- Redefine BC scores as:

$$
B C(v)=\sum_{s \neq \mathrm{v}} \delta_{s}(v)
$$

Coarse-grained Parallelization Strategy


```
\(B C[1] \leftarrow B C[1]+7\) \(B C[2] \leftarrow B C[2]+2\)
\(B C[9] \leftarrow B C[9]-4\)
```

Source vertices to be processed

CUDA Grid			
	$S M_{0}$		

Calculate local changes to $B C$ scores

Fine-grained Parallelization Strategy

- Consider a BFS from vertex 4
- Expanding vertices \{1,3,5,6\}

Georgia
Tech

Motivation for Hybrid Methods

- No one method of parallelization works best

(a) delaunay_n20

(b) rgg_n_2_20

(c) kron_g500-logn20
- High diameter: Only do useful work
- Low diameter: Leverage memory bandwidth

Dynamic Analytics

- Update analytics rather than recompute them
- Typically, a local region of the graph is affected
- A high throughput solution is desirable
- Leverage the memory bandwidth of the GPU
- Process each update in parallel
- A monumental task..
- GPU kernels tend to be monolithic

- Efficient parallel algorithms are lacking
- Less intuitive to implement

Prior Dynamic Approaches

- Multiple implementations
- Sequential
- Resemble Green et al.
- Three update scenarios

1. Same distance from the root
2. Adjacent distances from root
3. Greater than one level apart

Experimental Setup

GPU	SMs	Memory (GB)	Frequency $($ GHz)	Compute Capability	TDP (W)
Tesla K40c	15	12	0.745	3.5	245
GT 640 (Kayla)	2	1	0.95	3.5	75

- Kayla Platform
- NVIDIA Tegra 3 ARM Cortex A9 CPU
- 1.7 GHz single core
- 32 KB L1 Instruction/Data Cache; 1 MB L2 Cache
- 2 GB DDR3 RAM

Measuring Power

- Tesla GPUs
- NVIDIA Management Library (NVML)
- C-based API for measuring power
- Sample at 10 ms intervals
- Kayla Platform
- Watts Up wall-plug meter
- Measures system power

- CPU idle during GPU execution and vice versa
- Sample at 1 ms intervals
- Power is averaged over the lifespan of a kernel

Benchmark Data Sets

Name	Vertices	Edges	Significance
delaunay_n12	4,096	12,264	Random Triangulation
delaunay_n20	$1,048,576$	$3,145,686$	Random Triangulation
kron_g500-logn16	55,321	$2,456,071$	Kronecker Graph
kron_g500-logn19	524,488	$21,780,787$	Kronecker Graph
luxembourg.osm	114,599	119,666	Road Network
preferentialAttachment	100,000	499,985	Scale-free
smallworld	100,000	499,998	Logarithmic Diameter

- Publicly available datasets
- DIMACS 10 ${ }^{\text {th }}$ Challenge

Energy-efficiency of Static Calculations

- Define Traversed Edges per Second (TEPS):

$$
\operatorname{TEPS}_{B C}(G, t)=\frac{m n}{t}
$$

Graph	Classification	Average Power (W)	MTEPS/W
delaunay_n20	Mesh	129.38	0.85
luxembourg.osm	Road Network	95.41	0.35
preferentialAttachment	Scale-free	127.18	1.33
smallworld	Logarithmic Diameter	127.10	2.54

- Low-diameter networks fully occupy the GPU
- Avg. Power is well below TDP (245 W)

Energy-efficiency of Dynamic Calculations

- Static vs. Dynamic on the Kayla Platform (GPU)
- Times are averaged for 100 edge insertions

Graph	delaunay_n12	kron_g500-logn16
Solution Quality	Exact	Approximate $(k=256)$
Static Time (s)	12.63	5.63
Dynamic Time (s)	1.32	1.33
Speedup	$9.6 \mathbf{x}$	$4.2 \mathbf{x}$
Static Energy (J)	424	188
Dynamic Energy (J)	42.6	43.8
Energy Savings	$\mathbf{9 0 . 0 \%}$	$\mathbf{7 6 . 7 \%}$
Static MTEPS/W	0.12	3.34
Dynamic MTEPS/W	1.18	14.37

Energy-efficiency of the embedded GPU

- CPU vs. GPU on the Kayla Platform (Dynamic)
- Times are averaged for 100 edge insertions

Graph	delaunay_n12	kron_g500-logn16
Solution Quality	Exact	Approximate $(k=256)$
CPU Time (s)	35.44	33.79
GPU Time (s)	1.32	1.33
Speedup	$\mathbf{2 6 . 9 2 x}$	$\mathbf{2 5 . 3 9 x}$
Avg. CPU Energy (J)	914.35	875.08
Avg. GPU Energy (J)	42.64	43.79
Energy Savings	$\mathbf{9 5 . 3 \%}$	$\mathbf{9 5 . 0 \%}$
CPU MTEPS/W	0.05	0.72
GPU MTEPS/W	1.18	14.37

Portion of graph affected by updates

- 62,844 Adjacent insertions
- The worst insertion touched only ~35\% of the nodes in the graph
- Common insertion: Less than 1\% of nodes touched

Power Consumption by Traversal Method

- Edge-parallel method inspects all edges for all iterations
- Consistent, wasteful work
- Work-efficient method requires considerably less power

Conclusions

- Energy reduction can be achieved through parallelism and dynamic algorithms
- Work-efficient algorithms are paramount
- Updates tend to affect a local region of the graph
- Better performance while using less power
- Hybrid approaches for varying graph structures
- Programmability is a huge concern
- Performance portability is difficult to obtain
- Let library designers handle this burden

Acknowledgment of Support

Microsoft

(intel)

NVMDUA.

Sandia National Laboratories

Questions

"To raise new questions, new possibilities, to regard old problems from a new angle, requires creative imagination and marks real advance in science." - Albert Einstein https://github.com/Adam27X/hybrid BC

Backup

Example BC Calculation

Power Consumption and Thread Blocks

- HW does its best to idle SMs
- Number of thread blocks should be a multiple of the number of SMs
- Performance scales linearly until all 14 SMs are busy

Case \#1 - Same level

- New edge

$$
e=(u, v)
$$

- No new shortest paths in this tree.

Case \#2 - Adjacent levels

- New edge

$$
e=\left(u_{\text {high }}, u_{\text {low }}\right)
$$

- All new paths go through e.

Case \#2 - Adjacent levels

Case \#3- Pull-up

Georgia
Tech

Case \#3- Pull-up

Case \#3- Pull-up

