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Motivation

• Real world graphs are challenging 

to process

– Enormous

•Networks cannot be manually inspected

– Varying structural properties

•Small-world, scale-free, meshes, road 

networks

– Not a one-size fits all problem

– Unpredictable

•Rapidly change over time

•Data dependent memory access patterns
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Motivation

• Graphs are no longer processed by 

supercomputers alone

– Embedded systems

•Computer vision

– Mobile devices

•Spam detection

• Systems are becoming constrained by power 

and energy

– High demand for work-efficient implementations

– Goal: Maximize performance per Watt using GPUs
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Betweenness Centrality

• Determine the 

importance of a vertex 

in a network

– Requires the solution of 

the APSP problem

• Computationally 

demanding

– 𝑂 𝑚𝑛 time complexity
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Applications

• Deployment of detection 

devices in communication 

networks [Bye et. al]

• Analyzing brain networks

[Rubinov and Sporns]

• Sexual networks and AIDS

• Identifying key actors in

terrorist networks

• Transportation networks
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Defining Betweenness Centrality

• Formally, the BC score of a vertex is defined 

as:

𝐵𝐶 𝑣 =  

𝑠≠t≠v

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡

• 𝜎𝑠𝑡 is the number of shortest paths from 𝑠 to 𝑡

• 𝜎𝑠𝑡(𝑣) is the number of those paths passing through 𝑣
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𝜎𝑠𝑡 = 2

𝜎𝑠𝑡(𝑣) = 1
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Brandes’s Algorithm

• Fastest known sequential algorithm

• Recursive relationship between BC scores 

contributed by a single vertex (“root”)

– Dependency:

𝛿𝑠 𝑣 =  

𝑤∈𝑠𝑢𝑐𝑐(𝑣)

𝜎𝑠𝑣
𝜎𝑠𝑤
1 + 𝛿𝑠 𝑤
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– Redefine BC scores as:

𝐵𝐶 𝑣 = 

𝑠≠v

𝛿𝑠(𝑣)
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Coarse-grained Parallelization Strategy
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Fine-grained Parallelization Strategy
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• Consider a BFS from 

vertex 4 

• Expanding vertices 

{1,3,5,6}
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Motivation for Hybrid Methods

• No one method of parallelization works best
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• High diameter: Only do useful work

• Low diameter: Leverage memory bandwidth



Dynamic Analytics

• Update analytics rather than recompute them

– Typically, a local region of the graph is affected

• A high throughput solution is desirable

– Leverage the memory bandwidth of the GPU

– Process each update in parallel

• A monumental task..

– GPU kernels tend to be monolithic

– Efficient parallel algorithms are lacking

– Less intuitive to implement
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Prior Dynamic Approaches

• Multiple implementations 

– Sequential

– Resemble Green et al.

• Three update scenarios

1. Same distance from the 

root

2. Adjacent distances from 

root

3. Greater than one level 

apart
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Experimental Setup

GPU SMs Memory

(GB)

Frequency 

(GHz)

Compute 

Capability

TDP (W)

Tesla K40c 15 12 0.745 3.5 245

GT 640 

(Kayla)

2 1 0.95 3.5 75
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• Kayla Platform

– NVIDIA Tegra 3 ARM Cortex A9 CPU

•1.7 GHz single core

•32 KB L1 Instruction/Data Cache; 1 MB L2 Cache

•2 GB DDR3 RAM



Measuring Power

• Tesla GPUs

– NVIDIA Management Library (NVML)

•C-based API for measuring power

•Sample at 10 ms intervals

• Kayla Platform

– Watts Up wall-plug meter

– Measures system power

•CPU idle during GPU execution and vice versa

•Sample at 1 ms intervals

• Power is averaged over the lifespan of a kernel
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Benchmark Data Sets

Name Vertices Edges Significance

delaunay_n12 4,096 12,264 Random Triangulation

delaunay_n20 1,048,576 3,145,686 Random Triangulation

kron_g500-logn16 55,321 2,456,071 Kronecker Graph

kron_g500-logn19 524,488 21,780,787 Kronecker Graph

luxembourg.osm 114,599 119,666 Road Network

preferentialAttachment 100,000 499,985 Scale-free

smallworld 100,000 499,998 Logarithmic Diameter
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• Publicly available datasets

– DIMACS 10th Challenge



Energy-efficiency of Static Calculations

• Define Traversed Edges per Second (TEPS):

𝑇𝐸𝑃𝑆𝐵𝐶 𝐺, 𝑡 =
𝑚𝑛

𝑡

• Low-diameter networks fully occupy the GPU

• Avg. Power is well below TDP (245 W)
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Graph Classification Average Power (W) MTEPS/W

delaunay_n20 Mesh 129.38 0.85

luxembourg.osm Road Network 95.41 0.35

preferentialAttachment Scale-free 127.18 1.33

smallworld
Logarithmic 

Diameter
127.10 2.54



Energy-efficiency of Dynamic Calculations

• Static vs. Dynamic on the Kayla Platform (GPU)

• Times are averaged for 100 edge insertions
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Graph delaunay_n12 kron_g500-logn16

Solution Quality Exact Approximate (𝑘 = 256)

Static Time (s) 12.63 5.63

Dynamic Time (s) 1.32 1.33

Speedup 9.6x 4.2x

Static Energy (J) 424 188

Dynamic Energy (J) 42.6 43.8

Energy Savings 90.0% 76.7%

Static MTEPS/W 0.12 3.34

Dynamic MTEPS/W 1.18 14.37



Energy-efficiency of the embedded GPU

• CPU vs. GPU on the Kayla Platform (Dynamic)

• Times are averaged for 100 edge insertions
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Graph delaunay_n12 kron_g500-logn16

Solution Quality Exact Approximate (𝑘 = 256)

CPU Time (s) 35.44 33.79

GPU Time (s) 1.32 1.33

Speedup 26.92x 25.39x

Avg. CPU Energy (J) 914.35 875.08

Avg. GPU Energy (J) 42.64 43.79

Energy Savings 95.3% 95.0%

CPU MTEPS/W 0.05 0.72

GPU MTEPS/W 1.18 14.37



Portion of graph affected by updates

19

• 62,844 Adjacent 

insertions

– The worst insertion 

touched only ~35% 

of the nodes in the 

graph

– Common insertion: 

Less than 1% of 

nodes touched
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Power Consumption by Traversal Method
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• Edge-parallel 

method inspects all 

edges for all 

iterations

– Consistent, wasteful 

work

• Work-efficient 

method requires 

considerably less 

power



Conclusions

• Energy reduction can be achieved through 

parallelism and dynamic algorithms

• Work-efficient algorithms are paramount

– Updates tend to affect a local region of the graph

– Better performance while using less power

– Hybrid approaches for varying graph structures

• Programmability is a huge concern

– Performance portability is difficult to obtain

•Let library designers handle this burden
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Questions

“To raise new questions, new possibilities, to 

regard old problems from a new angle, requires 

creative imagination and marks real advance in 

science.”– Albert Einstein

https://github.com/Adam27X/hybrid_BC
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https://github.com/Adam27X/hybrid_BC


Backup
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Example BC Calculation
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Power Consumption and Thread Blocks
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• HW does its best to 

idle SMs

• Number of thread 

blocks should be a 

multiple of the 

number of SMs

– Performance scales 

linearly until all 14 

SMs are busy



Case #1 – Same level

• New edge

𝑒 = (𝑢, 𝑣)

• No new 

shortest 

paths in this 

tree.

𝑑 = 1

𝑑 = 2

𝑑 = 𝑖

𝑠

𝑣𝑢ℎ𝑖𝑔ℎ

𝑑 = 𝑖 + 1

𝑒
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Case #2 – Adjacent levels

d=1

d=2

d=i

s

ulow

uhigh

d=i+1

w

e

• New edge
𝑒 = (𝑢ℎ𝑖𝑔ℎ, 𝑢𝑙𝑜𝑤)

• All new paths 

go through e.
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Case #2 – Adjacent levels

• No new 

shortest paths 

above 𝑢𝑙𝑜𝑤.

• Start BFS 

traversal at 

𝑢𝑙𝑜𝑤.

• Fraction of 

edges/vertices 

traversed.

𝑑 = 1

𝑑 = 2

𝑑 = 𝑖

𝑠

𝑢𝑙𝑜𝑤

𝑢ℎ𝑖𝑔ℎ

𝑑 = 𝑖 + 1

𝑤

𝑒
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Case #3– Pull-up

• New edge

𝑒 = (𝑢ℎ𝑖𝑔ℎ, 𝑢𝑙𝑜𝑤)
𝑑 = 1

𝑑 = 2

𝑑 = 𝑖

𝑠

𝑢ℎ𝑖𝑔ℎ

𝑑 = 𝑖 + 1

𝑢𝑙𝑜𝑤
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Case #3– Pull-up

• New edge

𝑒 = (𝑢ℎ𝑖𝑔ℎ, 𝑢𝑙𝑜𝑤)
𝑑 = 1

𝑑 = 2

𝑑 = 𝑖

𝑠

𝑢ℎ𝑖𝑔ℎ

𝑑 = 𝑖 + 1
𝑢𝑙𝑜𝑤

𝑒
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Case #3– Pull-up

• No new 

shortest paths 

above 𝑢𝑙𝑜𝑤 .

• Start BFS 

traversal at 

𝑢𝑙𝑜𝑤.

• Fraction of 

edges/vertices 

traversed.

𝑑 = 1

𝑑 = 2

𝑑 = 𝑖

𝑠

𝑢ℎ𝑖𝑔ℎ

𝑑 = 𝑖 + 1
𝑢𝑙𝑜𝑤

𝑒
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