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Dr. Jason Riedy

> Research Scientist Il, Computational Science and
Engineering
» PhD UC Berkeley, 2010

> Major developer of STING, community-el, and other
used graph analysis codes

> Pl or co-Pl on > 5 current funded graph analysis
projects

> Primary author of the Graph500 specification

» Program Committees for HPC conferences including
IPDPS, HiPC, ICPP

» 20+ referreed publications, dozens of cited technical
reports, = 350 citations, etc.

» Widely used code in packages like LAPACK, BLAS;
contributions ranging from git to GNU R and Octave
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(insert prefix analysis

Cyber-security ldentify anomalies, malicious actors

o Health care Finding outbreaks, population epidemiology
é\‘ Social networks Advertising, searching, grouping
Intelligence Decisions at scale, regulating algorithms
Systems biology Understanding interactions, drug design
Power grid Disruptions, conservation

Simulation Discrete events, cracking meshes
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» Graphs are a unifying motif for data analysis.
» Changing and dynamic graphs are important!
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Report on Blackout Is Said To Describe Failure to React\/ N\“
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Why Graphs?

AiTbuted Relatonal Granh » Smaller, more generalized than
o AR o raw data.
» Taught (roughly) to all CS
students...

» Semantic attributions can
capture essential relationships.

» Traversals can be faster than
filtering DB joins.

17 1o

21 23

» Provide clear phrasing for
queries about relationships.

Often next step after dense and sparse linear algebra.
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Graphs: A Fundamental Abstraction

Structure for “unstructured” data

» Traditional uses:

» Route planning on fixed routes
» Logistic planning between sources, routes, destinations
» Increasing uses:

» Computer security: Identify anomalies (e.g. spam, viruses,
hacks) as they occur, insider threats, control access,
localize malware

» Data / intelligence integration: Find smaller, relevant
subsets of massive, “unstructured” data piles

» Recommender systems (industry): Given activities,
automatically find other interesting data.
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Application: Analyzing Twitter for Social Good

Massive Social Network Analysis:
Mining Twitter for Social Good
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Top 15 USERS BY BETWEENNESS CENTRALITY

Rank Data Set
atlflood

1 Rajc
2 @driveafaste
3 PAX BATLCheap
4 RTWCL .
5 @nytimes @ielloNortnca | blic tweets
6 EBtweetmeme @llAliveNews
7 G@mercola GWSB_TV e
8 RGCNN @shaun 1:_‘ = ’
9 @backstreetboys @Carl
10 @EllieSmith_x @SpaceyG
11 eTIME RATLINtownPa,
12 @CDCemergency @TJsDJs

@CDC_eHealth @ATLien W

@perezhilten @MarshallRamsey

@billmaher @Kanye !

1184 vertices

Subcommunity filtering on Twitter data sets
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Problems

» Detecting “communities
automatically

» Identifying important
individuals

» Given a few members,
finding a joint community

» Finding actual anomalies

ATT
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What techniques can scale to
massive, noisy, changing

populations?
http://xkcd.com/802
CMG, Nov 2014 8/38
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And more applications...

» Cybersecurity

» Determine if new packets are allowed or represent new
threat in < 5ms...
» Is the transfer a virus? lllicit?

» Credit fraud forensics = detection = monitoring

» Integrate all the customer’s data
» Becoming closer to real-time, massive scale

» Bioinformatics
» Construct gene sequences, analyze protein interactions,
map brain interactions
» Amount of new data arriving is growing massively
» Power network planning, monitoring, and re-routing

» Already nation-scale problem
» As more power sources come online (rooftop solar)...
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No shortage of data...

Existing (some out-of-date) data volumes

NYSE 1.5 TB generated daily into a maintained 8 PB archive
Google “Several dozen” 1PB data sets (CACM, Jan 2010)
LHC 15 PB per year (avg. 21 TB daily)
Wal-Mart 536 TB, 1B entries daily (2006)

EBay 2 PB traditional DB, and 6.5PB streaming, 17 trillion records,
1.5B records/day, web click = 50-150 details. (2009)

Facebook > 1B monthly users...

» All data is rich and semantic (graphs!) and changing.
» Base data rates include items and not relationships.
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Data velocities

SR

» 1 Gb Ethernet: 8.7TB daily at 100%,
5-6TB daily realistic

> PB disk rack, parallel 10GE: 1.7PB daily

NYSE >1.5TB daily
LHC >41TB daily

NG seq. 150(;.5 Pedr ’ streaming read/write
machine dally > CPU «— Memory: QPIHT:
Facebook Who knows? 5+PB/day@100%

Data growth Speed growth

> Facebook: > 2x/yr
> Twitter: > 10x/yr

» Ethernet/IB/etc.: 4x in next 2 years?
» Memory: Slow growth, possible bump?

- Clmiihg Seuises: Heeli, » Direct storage: flash, then what?

sensors, security
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Streaming graph data

Data Rates
Networks:
» Gigabit ethernet: 81k — 1.5M packets per second
» Over 130000 flows per second on 10 GigE
Person-level, from www.statisticsbrain.com:
» 58M posts per day on Twitter (671 / sec)
» 1M links shared per 20 minutes on Facebook

Opportunities

» Often analyze only changes, not entire graph
» Throughput & latency: Different levels of concurrency
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Methods

Methods
Example Algorithm: BFS, Graph500
Methods for Streaming Data
Algorithmic Disruptions
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General approaches: Static and Streaming
Different approaches

» High-performance static graph analysis
» Techniques apply to unchanging massive graphs
» Provides useful after-the-fact information, starting points.
» Serves many existing applications well: market research,
much bio- & health-informatics...
» Massive-scale algorithms need to be O(|E|) or
approximated down to it.
» High-performance streaming graph analysis
» Focus: smaller dynamic changes within massive graphs
» Streaming data, not CS-style streaming algorithms
» Find trends or new information as they appear.
» Serves upcoming applications: fault or threat detection,
trend analysis, online prediction...
» Can be O(]AE[)? O(Vol(AV))?
» Less data = faster, more efficient, lower latency
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Breadth-First Search

The problem...

Build a tree from a starting vertex by repeatedly visiting all
immediate, unvisited neighbors. At each traversal, record a
parent. Repeat until there are no unvisited neighbors.

» O(|V| + |E|), but problem-dependent parallel performace
Core of many scalable, parallel graph algorithms
Non-deterministic when any parent works

Base of the Graph500 benchmark, “fastest traversal”
Isn’t it done yet? Nope.

v

v

v
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Graph500 Performance History
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Plot courtesy of Scott Beamer, UC Berkeley
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Graph500 Perf/Cores History
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2010 2011 2011 2012 2012 2013 2013 2014

Plot courtesy of Scott Beamer, UC Berkeley
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Graph500 Perf v. Size, Summer 2014
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Streaming Queries

Different kinds of questions

» How are individual graph metrics (e.g. clustering
coefficients) changing?
» What are the patterns in the changes?
» Are there seasonal variations?
» What are responses to events?
» What are temporal anomalies in the graph?

» Do key members in clusters / communities change?
» Are there indicators of event responses before they are

obvious?

New kinds of queries, new challenges...
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Performance on Streaming Graphs

Work at Georgia Tech

>

»

v

Riedy

Triangle counting / clustering coefficients

» Up to 130k graph updates per second on X5570 (Nehalem-EP,

2.93GHz)
Connected components & spanning forest
» Over 88k graph updates per second on X5570

Community detection & maintenance

» Up to 100 million updates per second, 4-socket 40-core

Westmere-EX

» (Note: Most updates do not change communities...)

Incremental PageRank

> Reduce lower latency by > 2x over restarting
Betweenness centrality

> O(|VI]-(IVI+|E])), can be sampled

» Speed-ups of 40x-150x over static recomputation

, Bader— Graph Analysis

CMG, Nov 2014
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Algorithmic Disruptions

» Current: Computing on the data as it arrives, not
recomputing over all data.
» Faster, lower latency, lower power...
» New algorithms for old problems.
» Many practical parallel graph algorithms are not
“work-efficient.”
» New work is finding work-efficient and practical methods:
Connected components (CMU: Shun, Dhulipala, Blelloch,
SPAA 2014), betweenness centrality (McLaughlin and
Bader, SC14)
» Approximations and coping with errors
» There is very little approximation theory for graph
algorithms.
» Not sure which metrics are sensitive to sampling, errors...
(Zakrzewska and Bader, PPAM 2013)
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Tools

Tools
Graph Databases
Cluster/Cloud Tools
“Capability” Tools
HPC Tools
Streaming Tools
Software Disruptions
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Tools

Rough Categories

Graph DB Neo4j, Sparksee (was DEX), AllegroGraph,
Sesame, Titan, Flock...

Clusters/Cloud GraphX, Pregel, giraph, pegasus...
“Capability” igraph, networkX

HPC KDT / GraphBLAS, GraphLab, NetworKIT, GraphCT
Streaming GT STINGER
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Graph Databases

Pros

» Incredibly flexible data models
» Large ecosystem:

» query and viz tools
» data management tools

Cons

» Standard query languages do not support most
algorithms.

» The flexibility costs performance. Analysis algorithms run
10x - 100x slower than more specific analysis tools, at
least. (“A Performance Evaluation of Open Source Graph
Databases,” R. McColl, et al., 2014)

Riedy, Bader— Graph Analysis CMG, Nov 2014 24 /38



Cluster/Cloud Tools

Pros

» Growing ecosystem, large buzz
» Simple to write simple analyses.
» Often the only systems that handle hardware failure!

Cons

» Performance can be comparable to graph databases...
» Often incredibly difficult to write more complex algorithms
» Clusters are expensive compared to single-node.

» Many more power supplies
» Wasted memory on OSes
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“Capability” Tools

Pros

» Stockpiles of algorithms
» Available for many interactive environments (e.g. R)
» Good solution for exploring analysis of small data sets

Cons

» Rarely ever parallel
» Often cannot scale to large problems
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HPC Tools

Pros

» HPC: Fast. Really fast. Often fastest.

» Scale to large problems
» Exist for traditional HPC boxes, “cloud” allocations, etc.
» Also for large-memory servers!

Cons

» Distributed-memory versions use very focused models for
performance

» GraphBLAS: Sparse matrix - sparse vector product
» GraphLab: Vertex programs

» If your problem does not fit the model...
» Algorithms still being developed

Riedy, Bader— Graph Analysis CMG, Nov 2014 27 /38




Streaming Tools

Pros

» Great fit for streaming problems!

» Astounding speed-ups over static re-analysis. Speed-up
grows with problem size.

» Can target high throughput or low latency.

Cons

» There really aren’t many tools... (STINGER at GT)
» Terminology is very much in flux...
» Algorithms are still being designed...

Riedy, Bader— Graph Analysis CMG, Nov 2014 28/38
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Software Disruptions

» New algorithms are being developed, tuning can be
astronomically hard.
» “Work-efficient” is not always fastest, need sampling and
run-time algorithm selection (McLaughlin and Bader, SC
2014)
» Combinations: Let each tool do what it does well.
» Cloud/cluster: Fantastic for data extraction
» HPC tools: Fantastic for analysis
» Combination: Kang and Bader, MTAAP 2010, reduce
analysis time by five orders of magnitude.
» Cloud extraction — streaming processing: Demonstrated
with STINGER at Research@Intel 2013, GraphLab Workshop
2013
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Hardware

Hardware
Architecture Requirements
Existing Platforms
Disruptive Platform Changes
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Architecture Requirements for Efficiency

The issues

>

A\

A\

A\
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Riedy

Runtime is dominated by latency

» “Random” accesses to global graph and data storage

» Can hot-spot: Many accesses to the same place
Essentially no computation to hide the latency

Access pattern is problem dependent

» Prefetching can hinder performance
» Often only want a small portion of data

Most parts suffer from abysmal locality in memory

Cannot require a nuclear reactor.

, Bader— Graph Analysis
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Architecture Requirements for Efficiency

Some desires

A\

v

v

A\

v

Riedy

Large memory capacity

Low latency, high bandwidth, high injection rate

» For very small messages!
Latency tolerance (threading...)
Light-weight, localized synchronization
Global address space

» Partitioning is nigh impossible
» Ghost nodes everywhere

» Algorithms are difficult enough to implement

, Bader— Graph Analysis
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Existing Platforms

» Distributed memory / cluster

» Cloud-ish: Slow network, massive storage
» HPC-ish: Fast network, less storage

» Shared memory

» Single motherboard: Ultra-fast network, little storage
» Many motherboards: Tricky...

» Accelerators: Tiny memory, incredible bandwidth

Now start combining the platforms...
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Mapping Problems to Platforms
|

» Distributed memory / cluster
» Cloud-ish: Fantastic for massive storage, extraction
» HPC-ish: Great for known, forensic analysis on extracted
graph
» All of them eat power.
» Shared memory
» Highly-threaded, single node: Focused analysis, streaming
» Highly-threaded, multi-node: Often hard to extract enough
parallelism (Cray XMT / URIiKA)
» Multi-node virtual shared memory: Re-eval in progress
» Single node often eats less power, but...

» Accelerators

» Very, very focused analysis
» Can be very energy-efficient (McLaughlin, Riedy, Bader,
HPEC 2014)
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Distruptive Platform Changes

» In next 3-5 years, memory is going to change.
» 3D stacked memory (IBM, NVIDIA)

Hybrid memory cube (HMC Cons., Micron, Intel)

Programming logic layer on-chip

Possibly non-volatile

Order of magnitude higher bandwidth

Order of magnitude lower energy cost

» This is happening. You can obtain HMC-FPGA
combinations for testing.
» Interconnects are changing.

» Processor <& memory < accelerator (NVLink, Phi)
» Data-center networks finally may change, not just nGbE

v
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Summary and Opportunities

We live in interesting times.

» Graph analysis tools, platforms are developing rapidly.
» Only just starting to combine platforms and map problems
appropriately.
» Performance is developing rapidly.
» New algorithms, improved implementations, better
platform choices
» New approaches like streaming and approximation
» Even bigger changes are coming.

» Can you imagine a PB of non-volatile storage at nearly RAM
speed and latency?
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STINGER: Where do you get it?

www.cc.gatech.edu/stinger/
Gateway to

% Graph analytics to

the rescue! | > COde,
» development,

» . » documentation,
» presentations...

Remember: Still academic code, but
maturing.

Users / contributors / questioners:
Georgia Tech, PNNL, CMU, Berkeley,
Intel, Cray, NVIDIA, IBM, Federal
Government, lonic Security, Citi
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