
Efficient SIMD evaluation of image processing programs

J. N. Wilson and E. J. Riedy

University of Florida cise Department
Gainesville, fl 32612-6120 usa
jnw@cise.ufl.edu ejr@cise.ufl.edu

ABSTRACT

Simd parallel systems have been employed for image processing and computer vision applications since their inception.
This paper describes a system in which parallel programs are implemented using a machine-independent, retargetable
object library that provides simd execution on the Lockheed Martin pal-i simd parallel processor. Programs’
performance on this machine is improved through on-the-fly execution analysis and scheduling. We describe the
relevant elements of the system structure, the general scheme for execution analysis, and the current cost model for
scheduling.

Keywords: simd, image algebra

1. INTRODUCTION

Single instruction stream, multiple data stream (simd) parallelism has been employed for computer-vision related
activities since the development of the Goddard Massively Parallel Processor (mpp).1 Various approaches have been
used to implement application programs on simd machines, ranging from the use of microcode to special-purpose
languages2 to special implementations of general-purpose languages.3 In this paper, we discuss the use of the
retargetable Image Algebra C++ object library iac++4 designed to support image-processing and computer-vision
applications. This library has been targeted to the Lockheed Martin pal-i processor, a fine-grained, simd-parallel
processor.

To modify the iac++ library to provide efficient simd execution on the pal system required the development of a
new image representation class, implementation of a client-server system, development of a strategy to reduce data
transfers, and creation of a cost measure to control that strategy. The next section briefly describes the properties
of the pal-i, ioc/sa simd machine. The operations and operands provided by the iac++ library and the way its
software architecture supports retargeting to the pal is described in section 3. Section 4 describes the cost function
used to direct the evaluation of programs on the simd array to reduce the required processing time. The heuristics
applied to optimize the cost function are described in section 5. We conclude with a discussion of limitations of our
current cost function and evaluation strategy.

2. THE PAL-I SIMD PROCESSING SYSTEM

The pal-i, ioc/sa system is a workstation-based image-processing development environment. The pal processor
itself is an attached image processing accelerator. The system’s current workstation platform is a Sun SparcStation 4.
The pal processor is attached to such a workstation with an edt scd-40 configurable dma interface.5 This provides
a nominal 40 megabyte per second (mb/s) connection between the host workstation and the pal processor. The
pal processor itself is a multiple board 6u vme system with one controller board and one or more processor array
boards. Each processor board contains 4,608 one-bit processing elements (pes) arranged in a 64 × 72 grid. The
typical configuration of a pal-i system has two processor array boards and contains 9,216 pes. Clocked at 40 mhz,
this system can execute over 368 billion bit operations per second. For 32-bit integer operations, this translates into
execution speeds on the order of up to billions of operations per second. And because the processors are connected
in a two-dimensional mesh network, performance of this system on local neighborhood operations can far outstrip
any sequential processor.

Efficiently programming such a simd processor system presents challenges. The sustained throughput of the scd-
40 card is, in fact somewhat less that 10 mb/s. Thus, transfer of a 9,216 pixel image with 8-bit element values will
typically consume over 30,000 simd clock cycles. Even with its single-bit architecture, the pal system can implement
most 32-bit floating-point operations in just hundreds of clock cycles. The system is capable of executing between
dozens and hundreds of operations in the time it takes to transfer an operand from host memory onto the system.
Two primary mechanisms are used to overcome such problems: designing the system to simultaneously transfer
data and execute operations, or employing a cache memory hierarchy to place data near the processors. Both these
activities can improve performance of a simd system such as the pal-i, however, they cannot completely overcome
the severe imbalance between transfer rate and computation speed presented by the ioc/sa. Although it can halve
the processing time spent on any computation, simultaneous transfer fails because the processor speed in our setting
is still much faster than the doubled transfer speed. Providing a cache memory hierarchy will improve performance,
but will still face the problem that image operands frequently occupy megabytes of storage. Even if one can store
a few operands of this sort directly in the processing elements, the next level of the cache will incur some transfer
penalty.

The user interface provided by Lockheed Martin for programming the pal system is the pal Workstation De-
velopment Library (PAL WS). This library supports parallel computation on simd-array-sized chunks of images and
provides rudimentary support for creating larger images and directing operations to be carried out upon these images.
Images are stored on the host workstation and transferred to the pal machine as necessary to carry out the specified
operations.

3. RETARGETING THE IMAGE ALGEBRA C++ LIBRARY

The iac++ library provides classes of objects and related operations that are well suited to specifying image processing
and computer vision algorithms. It was developed at a high level of abstraction, thus it is independent of any specific
computer architecture. Furthermore, its software architecture allows it to be retargeted to exploit the capabilities of
special-purpose computer architectures and devices.

3.1. Operands and operations of the iac++ Library

The operands of image algebra are drawn from the image algebra developed at the University of Florida by Ritter
et al.6 and fall into the following categories:

1. points and sets of points,

2. values and sets of values,

3. images (functions from points to values),

4. neighborhoods (images with values that are sets of points), and

5. templates (images with values that are images).

The iac++ class library provides these operands via a collection of C++ template classes.7 The groups of operands
listed above are represented as follows:

1. IA_Point<int>, and IA_Point<double> represents points with integral and floating-point coordinates (re-
spectively) and IA_Set<IA_Point<int> > and IA_Set<IA_Point<double> > represents sets containing these
points.

2. Values are represented by the built-in C++ types bool, unsigned char, int, and float and the additional
types IA_RGB and IA_Complex. Sets containing elements type T are provided by the type IA_Set<T>.

3. The image classes have C++ template arguments specifying the kind of points mapped and the type, T, of
elements. Most images are discretely sampled and of the form IA_Image<IA_Point<int>, T>. One continuous
image type is provided, IA_Image<IA_Point<double>, float>.

4. Neighborhood classes have C++ template arguments specifying the coordinate type of the domain points and
the range points. The only presently implemented class is IA_Neighborhood<int,int>.

5. Presently implemented templates map discrete point sets to discrete images. The C++ template argument,
T, to the class IA_DDTemplate<T> tells the type of image to which the template maps integral-coordinate
points. Templates on images with integer points and the value types bool, unsigned char, int, float, and
IA_Complex are supported by the library.

Operations upon images fall into several general categories:

1. binary and unary pointwise operations,

2. global reductions,

3. neighborhood and template reductions, and

4. composition with point-to-point or value-to-value functions.

These operations are provided, as appropriate, by overloaded operations on the image classes, by class member
functions, and by overloaded functions.

3.2. Retargeting the iac++ library to the PAL

The retargeting of the library is supported by the separation of user interface from representation employed in the
class hierarchy. The image classes are all instances of a single C++ template class, IA_Image<P,T>. These classes
provides the user interface to such images. Each of these user interface classes contains a reference (or handle) to an
object of type IA_BaseI<P,T>, the base class for image representations. A variety of specific representation classes are
derived from IA_BaseI<P,T> to effect efficient sequential implementation of the library, such as IA_VectorI<P,T>,
IA_ConstI<P,T>, and IA_FunctionI<P,T>, which represent an image as a vector of values, a constant value, and
a function mapping points to values, respectively. This arrangement of classes ensurea that the behavior of any
image in response to user-issued operations is dependent upon its representation class. To retarget the library to
support the pal ioc/sa system, we have developed an image representation class, IA_PIMI<P,T>, whose operations
are implemented on the pal.

This class structure is shown in figure 1. In this figure, we use the notation of the Unified Method of Booch
and Rumbaugh.8 Boxes represent classes. The word abstract indicates that there are no direct object instances of a
given class. The dashed boxes denote any parameters of the class. Solid lines imply that the class at the diamond
end contains a pointer to the class at the box end. A class at the tail of a dashed, directed line derives from the class
at the head of that line.

The current pal image representation class, IA_PIMI<P,T>, implements its operations through a client-server
system. The iac++ client application directs the Pal Image Manager (pim) through socket-sent operations. Image
data is placed in shared memory segments, eliminating costly, needless copying. This client-server architecture allows
us to mediate pal access between multiple clients. The full client-server arrangement is depicted in figure 2.

3.3. Evaluation of image operations on a small SIMD array

If we are to use a simd processor to operate upon images having many more pixels than there are simd processing
elements, then we must serialize our computation to some extent. One straightforward way is to break image
operands up into smaller image subframes or blocks. This breaks the operation into a sequence of array-sized,
parallel computations.

Suppose we wish to evaluate the expression R = (A + B) · C. The value of each pixel in R is the sum of the
corresponding pixels in A and B times the value of corresponding pixel in C. Assume that A, B, and C are so large
that they occupy more memory than the entire pe array contains. Any single image operation cannot be computed

IA FunctionIIA ConstI IA ErrorI

IA VectorI

IA BaseI
abstract

IA Image

P, TP, T P, T

P, T

P, T

P, T

IA PIMI

P, T

Figure 1. The image classes in the iac++ library are specialized for efficiency.

PAL WS library

pim server

socket 6
?
6
?
shared mem.

pim client

iac++ library

User program

Workstation

Microcode

pal machine

-¾

Figure 2. The user’s program uses the PIM client through the iac++ library to talk to the PIM server. The server
in turn uses the PAL WS library to communicate with the pal device.

on the pe array without being serialized. (This assumption is in fact warranted for many applications of the pal
and other simd systems.) Suppose we divide the image into k corresponding blocks A1, . . . , Ak, B1, . . . , Bk, and
C1, . . . , Ck. There are two fundamentally different, yet correct strategies to evaluate these operations.

In the first approach, we carry out operations on images in the order specified by the expression, fully evaluating
each image operation and yielding an entire image result. In our example, for each i in 1 to k, we calculate
Ti = Ai + Bi, then for each i in 1 to k, we calculate Ri = Ti · Ci. This approach produces numerous temporary
results that must be stored on the host.

In the second approach, we carry out operations on the entire expression for each subframe block, generating
an image composite after completing the work on each of the subframes. Thus, for each i in 1 to k, we calculate
Ri = (Ai + Bi) · Ci.

Temporary results should be avoided when they must be transferred over a slow path. In the second approach,
these temporary operands need never be transferred, and hence computations are completed more quickly. The
PIM server exploits this fact, using lazy evaluation9 of image operations. When a client program operates upon
images, the server construct an expression tree that represents the computation to be performed. When the client
program attempts to use pixel values of an expression’s result, we evaluate the associated tree and carry out as many
operations as possible on each subframe.

It might appear that the second evaluation approach is the best and should be used as the only serialization

Figure 3. Blindly applying templates leads to boundary effects along both image (solid) and array-induced (dashed)
borders.

rule. This ignores neighborhood and template operations’ requirements of data from neighboring pixels. Longer
sequences of neighborhood or template operations require larger neighboring regions in order to calculate a pixel’s
value. We cannot calculate valid results for neighborhood and template operations at every processing element, but
only those whose neighbors have valid values. This leads us to divide image operands into overlapping subframes. As
the number of such subframes increases, the time to communicate the original image grows, eventually overcoming
the savings we achieved by avoiding temporary results. If we can express the cost incurred during a sequence of
operations, we can attempt to analyze and minimize the cost dynamically.

4. COST MODEL

We discuss a two-dimensional system. Most restrictions to one dimension and extensions to higher dimensions are
straightforward. The total cost breaks into two sub-costs, the cost of transferring data and the cost of computing
results. Since execution time is to be minimized, the cost is expressed in terms of time.

4.1. Cost of transfers

Assume the image of interest is larger than the simd array. Then any computation must be broken into array-sized
blocks or subframes. Each input subframe needs transferred to the array, and each result subframe needs shipped
back out. The total transfer cost is the number of array-sized subframes transferred times the cost of transferring a
block.

4.1.1. Number of subframes

The straightforward method of breaking images into exactly array-sized blocks produces erroneous results. Template
and neighborhood operations along image borders produce boundary effects by sampling outside the image. Figure 3
shows how these effects also occur along the induced, internal borders.

The common solution for external boundary effects is to extend the image with a known value. This solution
works for many operations, but the padding around the image must still be transferred to the array. For the current
discussion assume the image’s padding is loaded as a part of the image. In practice, initializing a transfer buffer
with the padding value and assembling the image into the buffer also solves problems associated with images having
non-rectangular point sets. Some platforms may have an operation which extends a subframe on the simd array
more efficiently. The padding term in equation 2 below is still necessary to calculate the number of blocks.

Some operations, such as an image-template product which combines through addition and reduces by minimiza-
tion, do not have a single, convenient padding value. For additive minimum operations, the reduction identity is not

Figure 4. Each subframe (dashed) yields a smaller result (dotted).

¾ -ly(b) ¾ -ry(b)

6

?
lx(b)

6

?
rx(b)

Figure 5. The functions ld and rd denote the extent of a template’s bounding box on either side of the its origin.

preserved by the combination operator. For example, combining a padding value of 255, the 8-bit, unsigned identity
for min, with a template value of one results in an 8-bit value of zero. That zero will be the minimum value and
the result of the template. Fixing the padding values requires finding the correct minimum. That circularity implies
that another method is needed.

The min operator uses the sum’s result only if that point is in the original image, otherwise it uses its identity.
The correct value from either the sum or the identity is chosen according to a mask image. The mask has a value
of one at each point in the original image’s point set and zero elsewhere. This mask image must be transfered to
the array as well. The mask should be sent only if necessary on a per-block basis. This is dependent upon the point
set of the original image; a sparse point set such as {(i2, j)|0 ≤ i < 16, 0 ≤ j < 256} would require a mask on every
subframe. Again, some architectures may provide more efficient mechanisms for creating masks on the processing
array. The results below assume a mask is transfered with every block and provide an upper bound on the number
of transfers.

The internal boundary effects also need variable-valued padding. The necessary padding values, however, are
already available in the image and are loaded with the block. Avoiding internal boundary effects reduces the region
of the array containing valid results as shown in figure 4. This valid region tiles the image and determines the number
of subframes to be loaded.

For two-dimensional images on a two-dimensional processing array, the number of block boundaries along each
image axis is the length of the padded image divided by the length of the valid region. The total number of subframes
is the product of these across all the image’s dimensions. If the dimensionality of the image does not match the
dimensionality of the processing array, more complicated subframing methods must be applied.

Let t be a sequence of templates and neighborhoods applied to an Lx × Ly image A. The simd array contains
Lx × Ly processing elements. Each template can be fit inside a bounding box. The sequence t has a corresponding
sequence of bounding boxes, a. On these boxes, define the functions ld(b) and rd(b) as shown in figure 5. The functions
determine the extent of the bounding box on either side of the template’s origin along dimension d ∈ {x, y}.

Figure 6. The valid region of image-image operations is the intersection of the operands’ valid regions.

Define the function padd on sequences of bounding boxes to be

padd(a) = max{ld(b)|b ∈ a}+ max{rd(b)|b ∈ a}. (1)

This is the total length of padding needed along dimension d.

The total number of subframes of A to be transferred is

B =
∏

d∈{x,y}

⌈ Ld + padd(a)
Ld −

∑
b∈a(ld(b) + rd(b))

⌉
. (2)

The ceiling operator takes care of image sizes which are not exact multiples of the array’s size. The resultant image
has the same point set as A. Any extra computed values are ignored. Notice that each neighborhood or template
operation decreases the size of the subframe’s valid region.

Building an expression tree for a sequence of template and neighborhood operations requires four state variables
per dimension, the sum and maximum of the ld and rd values. The method for keeping track of the valid region’s
size is clear. Adding another operation to an existing expression tree needs only the current root’s state variables.
The number of blocks to be transferred is compositional with these operations. In general, B is a function of the
immediate history of the computation.

Equation 2 only gives the number of subframes necessary for a sequence of template and neighborhood operations.
Unary and image-scalar operations do not affect the valid region’s size, so they can be introduced freely. Operations
between two images do affect the valid region as shown in figure 6. The result’s valid region is the intersection of
the arguments’ valid regions. The new state variables are the maximum values of the arguments’ state variables.
Note that the regions must be aligned consistently. In general, results of template operations should be shifted back
to their original points. This adds to the computational cost. The merges from image-image operations also add
dependencies on the order of operations and introduce a limited form of shared subexpressions.

4.1.2. Transfer time

The final cost of transferring the images depends on both the number of subframes and the time to transfer each
subframe. Blocks are transferred for both operand and result images.

Not all computations return a single result. Figure 7 shows one such case. The global reduction in line 15 triggers
evaluation of D, which in turn evaluates C. The results for C may be used again later, so they must be transfered
back to the host. Had line 14 been written D = (A + B) * A, the temporary result would be out of scope by line 15,
and the subresult of A + B would not be returned. The example is trivial, but real code often contains unused
temporaries for readability. Conservative dependency assumptions are a significant limitation of the implemented
system, one which does not modify the original source.

For a general sequence of operations, the total transfer time into the array, Tin, and the total transfer time out

1 IA_Set< IA_Point<int> > domain =
2 IA_boxy_pset (IA_Point<int> (0, 0),
3 IA_Point<int> (255, 255));
4

5 // Images A and B are to use the SIMD array, C and D
6 // will inherit that property...
7 IA_Image< IA_Set< IA_Point<int> >, int >
8 A = IA_PIMImage
9 (IA_Image< IA_Point<int>, int > (domain, 1)),
10 B = IA_PIMImage
11 (IA_Image< IA_Point<int>, int > (domain, 2)),
12 C, D;
13

14 C = A + B;
15 D = C * A;
16 cout << sum(D);

Figure 7. Because C is still in scope, evaluation of D also evaluates and stores C.

of the array, Tout, are

Tin = B

setup +

∑

A∈{operands
and masks}

T (rep-size(A))

 , and (3)

Tout = B

setup +

∑

A∈{results}
T (rep-size(A))

 , (4)

where rep-size(A) is the size of the machine representation of As values, and T (s) is the time needed to load block
of representation size s onto the processing array. The setup time is the small time required to initiate the transfer.

Many architectures are designed for streaming data and instructions. The general, transparent method attempted
here must deal with the staccato bursts caused by intermediate return values and by delays in the controlling
program. These bursts often will produce nonlinear times from low-level setup costs. Hence, the values of T should
be determined experimentally to counter possibly nonlinear transfer times.

Note that the set of temporary results may change during execution. Results are not returned to host-side variables
which have passed out of scope. At any given point in the tree, the Tout term determined during creation is an upper
bound. Updating the Tout values and propagating the new values up the tree is similar to the shared-subexpression
problem mentioned later.

4.2. Cost of computations

The cost of computation may be small compared to the cost of transferring the images, yet it must be considered as
a portion of the total cost. With future pal or other simd systems, the costs may be much closer. Each operation
has costs associated with each step of the computation. In this context, consider the same mathematical operation
on different representation sizes to be different operations.

4.2.1. Image-template operations

For general image-template products, A©γ t, treat a template as a sequence of points in the support and associated
values. Assume the support of all templates and neighborhoods fit on the array. The ordering of the sequence is
the convolution path. An accumulator image is initialized to the reduction operator γ’s identity. The computation

- -

?���

? -

6

Figure 8. This convolution path involves nine shift operations, eight for calculations and one for returning to the
origin.

proceeds by combining the entire subframe with each template point’s value, reducing the intermediate result into
the result subframe, and shifting the result to the next point.

The per-subframe cost of computing the general template product is the sum of the time to combine and reduce
at each template point and the time to shift the result to the next. At present, the shifting not only positions the
images for the current computation but also returns the result image to its original location, shown in figure 8. Other
convolution paths are possible. If there is an extra area of processor memory available, the path can be split into
two separate paths starting from different template locations. The cost of moving processing element memory into a
buffer negates the savings from a few shifts, so this optimization is only useful when temporary space already exists.

The cost C for computing an image-template product A©γ t with B subframes is

C = B
(
|t|

(
op-time(◦) + op-time(γ)

)
+ op-time(shift) · |path|

)
. (5)

Section 4.1.1 mentions the need for a masking image with certain image-template operations. The masking adds
to the per-template-point operation time.

4.2.2. Neighborhood operations

Neighborhood operations are simply local reductions. They are computed as templates without the combination
operation. The cost C for a neighborhood product A©Γ n with B subframes is

C = B
(
|n| op-time(γ) + op-time(shift) · |path|

)
. (6)

4.2.3. Unary, image-scalar, image-image operations

Once the necessary data resides on the processing array, unary, image-scalar, and image-image operations are calcu-
lated through a single operation per block. The cost C for unary operations (opA), image-scalar operations (s op A),
and image-image operations (A1 opA2) is

C = B · op-time(op). (7)

4.2.4. Global reductions

Global reductions produce a scalar result. Most languages, including C++, have no capacity for delaying the
computation and storage of their basic types. Thus, all global reductions in the iac++ system must be evaluated
immediately. The cost is immaterial for that purpose. Note that some common, important operations such as
equality testing are essentially global reductions.

If there were a method for delaying scalar results, global reductions could be considered neighborhood reductions
over an image’s entire support. This breaks the assumption that supports are smaller than the processing array,
requiring decomposition of the support.

4.2.5. Functional composition

Compositions between functions and images are not supported currently on the pal. Extending support to general
functions would place more restrictions on the source code. General functions will contain many sequential operations
on types native to the client. With a stock C++ system, these operations cannot be supported transparently.

For instance, composing an integer-valued image with a function that adds one would require parallelizing the
application of the function. If the function worked with the standard int type, a stock compiler would produce
standard sequential code. The library would need a way to execute that specific code on each processing element.
No such facility exists for the pal, which has different opcodes and data sizes than the host processor.

5. SCHEDULING EVALUATION OF TREES

The costs discussed so far are accumulated as an expression tree is built. At some point, the delayed operations must
be evaluated. The system only knows the history of the computation so far, not the entire span of computation. A
new operation is potentially the optimum place to stop building the tree, so some heuristic must guide the system
from the incomplete information available.

One simple heuristic is to examine the average cost per operation in a tree. As long as adding a new operation
decreases the average cost, it can be delayed. If the new operation increases the average cost, the tree should be
evaluated before the new operation is added.

Template and neighborhood operations decrease the valid region and initially increase the number of blocks
to be transferred. Multiple operations can be performed per block, however, obviating the need for intermediate,
temporary results. The two effects are balanced according to the time constants on a particular system. Unary and
image-scalar operations will always decrease the average cost, so they will never trigger an evaluation.

An image-image operation can increase the average cost by reducing the valid region. If it does, only one of the
two subtrees needs to be evaluated. One possible choice is to evaluate the subtree with the smallest valid region.
The smaller region cannot be delayed for many more image-template products, so this is a good choice when those
operations predominate. Evaluating the subtree with the lower average cost is also attractive. The higher cost is
likely to be decreased further than the lower. The lower average cost might correspond to the larger valid region,
however. A sampling of real examples will be necessary to determine which is more effective.

Other possible heuristics include hysteresis extensions on the average cost to support small bumps or waiting until
a result is required or the valid region is completely destroyed before partitioning the computation. The average-cost
heuristic has the advantages of being somewhat simple and relatively intuitive.

6. LIMITATIONS

Some of the assumptions made so far are not always suitable for real systems. Templates and neighborhoods may be
larger than the processing array. One delayed computation may be shared by multiple expression trees. A mostly
transparent system cannot detect these and modify the source; it must deal with them as they occur.

The processing array and the sequential host only have finite resources to devote to temporary results, as well.
Most hosts have limited shared memory for transferring images, and most processing arrays have limited on-board
memory. Some algorithms use very little space on the host but need many temporaries on the processing array. The
resource needs of others are reversed. Using nodes from a pre-allocated node pool controls the resource use on both
ends.

6.1. Weak template decomposition

Not all templates and neighborhoods will fit within a single subframe. The supports need to be decomposed, and
the decomposed pieces need to be calculated separately and reduced together.10 The image algebra already requires
the reduction operator to be associative, so no ordering problems arise.

1 // Say A, B, C, and D are defined as before,
2 // and t1 and t2 are simple, small templates
3 // of the appropriate type.
4

5 C = linear_product(A, t1) + B;
6 D = C * linear_product(A, t2);
7 cout << sum(C);

A

⊕ t1 B A

+ ⊕ t2

*

C

D

⇒
A

C ⊕ t2

*
D

Figure 9. The global reduction of C will invalidate the state information for the tree rooted at D.

If template t decomposes into templates t1 and t2, the template product becomes

A©γ t ⇒ (A©γ t1) γ translate(A©γ t′2). (8)

The translate function is a general notation for making the appropriate subframes line up, and t′2 is t2 with the origin
relocated to lie within the same subframe.

If the subexpressions A©γ t1 and A©γ t′2 can be broken into the same blocks, the calculation can be pipelined up
to the number of temporary stores available in the array. Subframes could be loaded as needed and used multiple
times before being replaced.

6.2. Shared subexpressions

Shared subexpressions seem to offer potential for further optimizations. However, they can destroy the compositional
nature of the cost function. Expressions are no longer disjoint; they join to form a directed, acyclic graph.

The evaluation of any subtree in an expression will invalidate the state information carried at the root of the
tree. Because subtrees can be shared between trees, evaluation of one expression’s tree can trigger evaluation of a
subtree within another expression’s tree. Figure 9 shows how even a simple sequence of operations can invalidate
state information.

This is similar to the earlier problem of overestimating the number of intermediate results. The current solutions
to both problems are to ignore them. The cost function composition method provides an upper bound. One extension
which could tighten the bound would be to keep track of a limited number of parents per node and update their
state information. Future tests will show how many updates will be both useful and feasible for practical algorithms.

Subexpressions shared only within one tree do not suffer from early evaluation. They could provide extra loading
optimizations, as seen in the support decomposition discussion.

6.3. Finer optimizations

The cost estimate is an upper bound. Many fine-tuning optimizations exist beyond the general framework presented
here. Some, such as always loading array-sized blocks of the image and shifting unused pieces into position for the
next block, may save more time at considerable programming expense. Others, such as tracking the origin of result

blocks and shifting them to agree rather than always returning the result to its origin, are of marginal savings and
little programming expense. Any implementation must find an acceptable balance between the different aspects of
efficiency.11

ACKNOWLEDGEMENTS

This work was sponsored in part by the Pal Consortium, funded by the Wright Laboratory Armament Directorate
at Eglin Air Force Base, Lockheed Martin Electronics and Missiles in Orlando, FL, and the University of Florida.
We would like to thank the consortium members for their efforts in support of this and other, related work. Dr.
Hongchi Shi of the University of Missouri-Columbia has assisted in editing.

references

1. K. E. Batcher, “Design of a massively parallel processor,” IEEE Transactions on Computers C-29, pp. 836–840,
Sept. 1980.

2. J. Rose and G. Steele, “C*: An extended C language for data parallel programming,” tech. rep., Thinking
Machines Corporation, 1987.

3. J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener, Fortran 90 Handbook, McGraw–Hill, New York,
ny, 1992.

4. J. Wilson, “Supporting image algebra in the C++ language,” in Image Algebra and Morphological Image Pro-
cessing IV, Proceedings of Spie 2030, pp. 315–326, (San Diego, ca), July 1993.

5. Engineering Design Team, Inc., SBus Configurable DMA Interface User’s Guide, document #00-00419-04 ed.,
1997.

6. G. Ritter and J. Wilson, Handbook of Computer Vision Algorithms in Image Algebra, Crc Press, Boca Raton,
fl, 1996.

7. M. A. Ellis and B. Stroustrup, The Annotated C++ Reference Manual, Addison–Wesley, 1990, 1990.
8. G. Booch and J. Rumbaugh, Unified Method for Object-Oriented Development Version 0.8, Rational Software

Corporation, 1995.
9. R. J. M. Hughes, “Why functional programming matters,” The Computer Journal 32, pp. 98–107, Apr. 1989.

10. G. Ritter, “Image algebra with applications.” Unpublished manuscript, available via anonymous ftp from
ftp://ftp.cise.ufl.edu/pub/src/ia/documents/ia.*.ps.gz, 1994.

11. L. Wall, T. Christiansen, and R. L. Schwartz, Programming Perl, 2nd. Edition, pp. 537–546. O’Reilly &
Associates, Inc., 1996.

