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2 Wilson, et. al.: An Image Algebra Based SIMD Image Processing Environment1 IntroductionThe advent of vlsi technology led image processing researchers to use such simd, mesh-connected computersas the illiac [2], the clip series [3, 4, 5], the dap [6], the mpp [7], the gapp [8, 9], and the Hughes3D Computer [10] for improving their codes' performance. Both the performance and cost-e�ectivenessof simd machines have improved steadily. However, the current software development systems are stillcomparable to assembly language programming for traditional sequential systems [11, 12]. Each parallelcomputer has its own language which runs e�ciently on only its architecture. Various approaches strivingfor architecture independence have been proposed [13], ranging from the use special-purpose languages [14]to special implementations of general-purpose languages [15]. A uni�ed software development environmentfor these parallel systems has yet to appear.Uni�ed frameworks for image-related applications have interested many researchers. Many e�orts havebeen devoted to searching such a uni�ed framework that can serve as a model for algorithms dealing withimage objects and �t well into the theory and practice of parallel computing [16]. Mathematical morphologyprovides a mathematical framework for expressing a large number of algorithms for image processing andanalysis [17, 18, 19, 20] through image �ltering and structuring elements. Morphology-based systems ignoreimportant operations like transformations between di�erent domains and between di�erent value sets. Theimage algebra developed by Ritter and his colleagues [21, 22] provides a more general framework for image-related applications. Image algebra incorporates and extends mathematical morphology, providing moregeneral image-template operations that support the elements missing from morphology. It de�nes imagesin the broadest sense and is widely applicable. Image algebra provides a common algebraic framework foralgorithm development, optimization, comparison, coding, and evaluation.In this chapter, we present a parallel environment based on image algebra suitable for simd machines.The environment keeps developers at a comfortable level of abstraction, specifying algorithms symbolicallyand algebraically, while automatically partitioning the image data and scheduling operations to achieveoptimal performance. Speci�cally, we discuss the use of the retargetable Image Algebra C++ object li-brary iac++ [23] for image processing on the Lockheed Martin pal-i computer, a �ne-grained, simd-parallelcomputer. Modifying the iac++ library to provide e�cient simd execution on the pal system requires thedevelopment of a new image representation class, implementation of a client-server system, development ofa strategy to reduce data transfers, and creation of a cost measure to control that strategy.The next section brie
y describes the properties of the pal-i ioc/sa simd machine. The image algebraenvironment structure and the operations and operands provided by the iac++ library are described insection 3. Section 4 discusses retargeting the iac++ to the pal. The cost function used to direct theevaluation of programs on the simd array to reduce the required processing time is presented in section 5.The heuristics applied to optimize the cost function are described in section 6. Section 7 contains possibleimprovements to the cost model and heuristics. Section 8 follows with a few examples of a simple costmodel and evaluation heuristic. Finally, section 9 closes with a direction for future work and notes on theimplementation in progress.2 The PAL-I SIMD Processing SystemThe pal-i ioc/sa system is a workstation-based image processing system. The pal processor array itself isan attached image processing accelerator. The system's current workstation platform is a Sun SparcStation 4.The pal processor array is attached to such a workstation with an edt scd-40 con�gurable dma interface [24].This provides a nominal 40 megabyte per second (mb/s) connection between the host workstation and thepal processor array. The pal processor array is a multiple board 6u vme system with one controller boardand one or more processor array boards. Each processor board contains 4,608 one-bit processing elements(pes) arranged in a 72� 64 grid. The typical con�guration of a pal-i system has two processor array boards



Visual Communication and Image Processing 3and contains 9,216 pes. Clocked at 40 mhz, this system can execute over 368 billion bit operations per second.For 32-bit integer operations, this translates into execution speeds on the order of up to billions of operationsper second. Because the processors are connected in a two-dimensional mesh network, performance of thissystem on local neighborhood operations can far outstrip any sequential computer.E�ciently programming such a simd processor system presents challenges. The sustained throughput ofthe scd-40 card in real situations is somewhat less that 10 mb/s. Thus, transfer of a 9,216 pixel image with8-bit pixel values will typically consume over 30,000 simd clock cycles. Even with its single-bit architecture,the pal system can implement most 32-bit 
oating-point operations in just hundreds of clock cycles. Thesystem is capable of executing between dozens and hundreds of operations in the time it takes to transferan operand from host memory onto the processor array.Two primary mechanisms are used to overcome such problems: designing the system to simultaneouslytransfer data and execute operations, or employing a cache memory hierarchy to place data near the pro-cessors. Both these activities can improve performance of a simd system such as the pal-i, but they cannotcompletely overcome the severe imbalance between transfer rate and computation speed presented by theioc/sa. Although it can halve the processing time spent on any computation, simultaneous transfer failsbecause the processor speed in our setting is still much faster than the doubled transfer speed. Providinga cache memory hierarchy will improve performance, but will still face the problem that image operandsfrequently occupy megabytes of storage. Even if one can store a few operands of this sort directly in theprocessing elements, the next level of the cache will incur some transfer penalty. A large frame bu�er candramatically improve many algorithms' performance, however.The user interface provided by Lockheed Martin for programming the pal system is the palWorkstationDevelopment Library (PAL WS). This library supports parallel computation on simd-array-sized chunks ofimages and provides rudimentary support for creating larger images and directing operations to be carriedout upon these images. Images are stored on the host workstation and transferred to the pal processor arrayas necessary to carry out the speci�ed operations.3 Software Environment Based on Image AlgebraThe ideal environment for application software development would rise from combining a simple, reasonablemodel with compilers that bridge the gaps between the model and speci�c architecture. Sequential computinghas such systems, but parallel computing does not. Although there are more parallel computer models thanparallel computer vendors, no suitable, all-encompassing model exists [25]. Neither do compilers capable ofexploiting every extant parallel architecture. Indeed, di�culties in formulating a single, useful model makeit appear unlikely that we will every have a single, useful environment for all parallel development. Thus,a practical methodology for application software development on parallel computers is to write algorithmsusing abstract libraries of fundamental data operations, implementations of which are optimized for speci�ccomputers. We adopt this approach and develop an image algebra based, parallel environment that augmentsthe C++ language with image algebra operations.3.1 Operands and Operations of the iac++ LibraryThe iac++ library provides classes of objects and related operations that are well suited to specifying imageprocessing and computer vision algorithms. It was developed at a high level of abstraction, thus it isindependent of any speci�c computer architecture. Furthermore, its software architecture allows it to beretargeted to exploit the capabilities of special-purpose computer architectures and devices. This classstructure is shown in �gure 1. In this �gure, we use the notation of the Uni�ed Method of Booch andRumbaugh [26]. Boxes represent classes. The word abstract indicates that there are no direct objectinstances of a given class. The dashed boxes denote any parameters of the class. Solid lines imply that the
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Figure 1: The image classes in the iac++ library are specialized for e�ciency.class at the diamond end contains a pointer to the class at the box end. A class at the tail of a dashed,directed line derives from the class at the head of that line.The operands of iac++ are drawn from the image algebra developed at the University of Florida by Ritterand Wilson [27] and fall into the following categories:1. points and sets of points,2. values and sets of values,3. images (functions from points to values),4. neighborhoods (images with values that are sets of points), and5. templates (images with values that are images).The iac++ class library provides these operands via a collection of C++ template classes [28]. The groupsof operands listed above are represented as follows:1. IA_Point<int> and IA_Point<double> represents points with integral and 
oating-point coordinates(respectively) and IA_Set<IA_Point<int> > and IA_Set<IA_Point<double> > represents sets con-taining these points.2. Values are represented by the built-in C++ types bool, unsigned char, int, and float and theadditional types IA_RGB and IA_Complex. Sets containing elements of type T are provided by the typeIA_Set<T>.3. The image classes have C++ template arguments specifying the kind of points mapped and the type,T, of elements. Most images are discretely sampled and of the form IA_Image<IA_Point<int>, T>.One continuous image type, IA_Image<IA_Point<double>, float>, is provided.4. The neighborhood classes have C++ template arguments specifying the coordinate type of the domainpoints and the range points. The only presently implemented class is IA_Neighborhood<int,int>.5. The presently implemented templates map discrete point sets to discrete images. The C++ tem-plate argument, T, to the class IA_DDTemplate<T> tells the type of image to which the templatemaps integral-coordinate points. Templates on images with integer points and value types bool,unsigned char, int, float, and IA_Complex are supported in the library.
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PAL WS librarypim serversocket 6?6?shared mem.pim clientiac++ libraryUser programWorkstation
Microcodepal machine-�Figure 2: The user's program uses the pim client through the iac++ library to talk to the pim server. Theserver in turn uses the PAL WS library to communicate with the pal device.Operations upon images fall into several general categories:1. binary and unary pointwise operations,2. global reductions,3. neighborhood and template reductions, and4. composition with point-to-point or value-to-value functions.These operations are provided, as appropriate, by overloaded operations on the image classes, by classmember functions, and by overloaded functions.3.2 The Image Algebra Environment StructureThe structure of the image algebra environment on the pal-i system is depicted in �gure 2. The current palimage representation class, IA_PIMI<P,T>, implements its operations through a client-server system. Theiac++ client application directs the Pal Image Manager (pim) through socket-sent operations. Image datais placed in shared memory segments, eliminating costly, needless copying. This client-server architectureallows us to mediate pal access between multiple clients.To e�ectively support image algebra based programming on the pal-i, we needed to re-target the iac++library to the pal-i and to implement data partitioning and operation scheduling strategies to e�cientlyschedule image algebra operations on the pal-i under a cost model.4 Retargeting the iac++ Library to the PALThe retargeting of the library is supported by the separation of user interface from the representationemployed in the class hierarchy. As shown in �gure 1, the image classes are all instances of a single C++template class, IA_Image<P,T>. These classes provide the user interface to such images. Each of theseuser interface classes contains a reference (or handle) to an object of type IA_BaseI<P,T>, the base classfor image representations. A variety of speci�c representation classes are derived from IA_BaseI<P,T> toe�ect e�cient sequential implementation of the library, such as IA_VectorI<P,T>, IA_ConstI<P,T>, andIA_FunctionI<P,T>, which represent an image as a vector of values, a constant value, and a functionmapping points to values, respectively. This arrangement of classes ensures that the behavior of any image



6 Wilson, et. al.: An Image Algebra Based SIMD Image Processing Environmentin response to user-issued operations is dependent upon its representation class. To re-target the library tosupport the pal ioc/sa system, we have developed an image representation class, IA_PIMI<P,T>, whoseoperations are implemented on the pal.If we are to use a simd computer to operate upon images having many more pixels than there are simdprocessing elements, then we must serialize our computation to some extent. One straightforward way is tobreak image operands up into smaller image subframes or blocks. This breaks the operation into a sequenceof array-sized, parallel computations.Suppose we wish to evaluate the expression R = (A+B) � C. The value of each pixel in R is the sum ofthe corresponding pixels in A and B times the value of corresponding pixel in C. Assume that A, B, and Care so large that they occupy more memory than the entire pe array contains. Any single image operationcannot be computed on the pe array without being serialized. (This assumption is in fact warranted formany applications of the pal and other simd systems.) Suppose we divide the images into k correspondingblocks A1; : : : ; Ak, B1; : : : ; Bk, and C1; : : : ; Ck. There are two fundamentally di�erent, yet correct strategiesto evaluate these operations.In the �rst approach, we carry out operations on images in the order speci�ed by the expression, fullyevaluating each image operation and yielding an entire image result. In our example, for each i in 1 to k,we calculate Ti = Ai + Bi, then for each i in 1 to k, we calculate Ri = Ti � Ci. This approach producestemporary results that must be stored on the host.In the second approach, we carry out operations on the entire expression for each subframe block, gen-erating an image composite after completing the work on each of the subframes. Thus, for each i in 1 to k,we calculate Ri = (Ai +Bi) � Ci.Temporary results should be avoided when they must be transferred over a slow path. In the secondapproach, these temporary operands need never be transferred, and hence computations are completed morequickly. The pim server exploits this fact, using lazy evaluation [29] of image operations. When a clientprogram operates upon images, the server constructs an expression tree that represents the computationto be performed. When the client program attempts to use the pixel values of an expression's result, weevaluate the associated tree and carry out as many operations as possible on each subframe.It might appear that the second evaluation approach is the best and should be used as the only seri-alization rule. This ignores neighborhood and template operations' requirements of data from neighboringpixels. Longer sequences of neighborhood or template operations require larger neighboring regions in orderto calculate a pixel's value. We cannot calculate valid results for neighborhood and template operations atevery processing element, but only those whose neighbors have valid values. This leads us to divide imageoperands into overlapping subframes. As the number of such subframes increases, the time to communicatethe original image grows, eventually overcoming the savings we achieve by avoiding temporary results. If wecan express the cost incurred during a sequence of operations, we can attempt to analyze and minimize thecost dynamically.5 Cost ModelWe assume a two-dimensional system. Most restrictions to one dimension and extensions to higher dimensionsare straightforward. The total cost breaks into two sub-costs, the cost of transferring data and the cost ofcomputing results. Since the goal is to minimize execution time, the cost is expressed in units of time.5.1 Cost of TransfersAssume the image of interest is larger than the simd array. Then any computation must be broken into array-sized blocks or subframes. Each input subframe needs transferred to the array, and each result subframeneeds shipped back out. The total transfer cost is the number of array-sized subframes transferred times the
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Figure 3: Blindly applying templates leads to boundary e�ects (lightly shaded) along both image (solid) andarray-induced (dashed) borders.cost of transferring a block.5.1.1 Number of SubframesThe straightforward method of breaking images into exactly array-sized blocks produces erroneous results.Template and neighborhood operations along image borders produce boundary e�ects by sampling outsidethe image. The boundary e�ects also occur along the induced, internal borders. Figure 3 shows these e�ects.The common solution for external boundary e�ects is to extend the image with a known value. Thissolution works for many operations, but the padding around the image must still be transferred to thearray. For the current discussion assume the image's padding is loaded as a part of the image. In practice,initializing a transfer bu�er with the padding value and assembling the image into the bu�er also solvesproblems associated with images having non-rectangular point sets. Some platforms may have an operationthat extends a subframe on the simd array more e�ciently. The padding term in equation 2 below is stillnecessary to calculate the number of blocks.Some operations, such as an image-template product which combines through addition and reducesby minimization, do not have a single, convenient padding value. For additive minimum operations, thereduction identity is not preserved by the combination operator. For example, combining an 8-bit, unsignedpadding value of 255 with a template value of one results in an 8-bit value of zero. That zero will bethe minimum value and the result of the template. Fixing the padding values requires �nding the correctminimum. That circularity implies that another method is needed.The min operator uses the sum's result only if that point is in the original image, otherwise it uses itsidentity. The correct value from either the sum or the identity is chosen according to a mask image. The maskhas a value of one at each point in the original image's point set and zero elsewhere. This mask image mustbe transferred to the array as well. The mask should be sent only if necessary on a per-block basis. This isdependent upon the point set of the original image; a sparse point set such as f(i2; j)j0 � i < 16; 0 � j < 256gwould require a mask on every subframe. Again, some architectures may provide more e�cient mechanismsfor creating masks on the processor array. The results below assume a mask is transferred with every blockand provide an upper bound on the number of transfers.The internal boundary e�ects also need variable-valued padding. The necessary padding values, however,are already available in the image and are loaded with the block. Avoiding internal boundary e�ects reducesthe region of the array containing valid results as shown in �gure 4. This valid region tiles the image anddetermines the number of subframes to be loaded.For two-dimensional images on a two-dimensional processor array, the number of block boundaries along
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Figure 4: Each subframe (dashed) yields a smaller result (dotted).� -ly(b) � -ry(b)6?lx(b)6?rx(b)Figure 5: The functions ld and rd denote the extent of a template's bounding box on either side of the itsorigin.each image axis is the length of the padded image divided by the length of the valid region. The total numberof subframes is the product of these across all the image's dimensions. If the dimensionality of the imagedoes not match the dimensionality of the processor array, more complicated subframing methods must beapplied.Let t be a sequence of templates and neighborhoods applied to an Lx � Ly image A. The simd arraycontains Lx�Ly processing elements. Each template can be �t inside a bounding box. The sequence t has acorresponding sequence of bounding boxes, a. On these boxes, de�ne the functions ld(b) and rd(b) as shownin �gure 5. The functions determine the extent of the bounding box on either side of the template's originalong dimension d 2 fx; yg.De�ne the function padd on sequences of bounding boxes to bepadd(a) = maxfld(b)jb 2 ag+maxfrd(b)jb 2 ag: (1)This is the total length of padding needed along dimension d.The total number of subframes of A to be transferred isB = Yd2fx;yg� Ld + padd(a)Ld �Pb2a(ld(b) + rd(b))� : (2)The ceiling operator takes care of image sizes which are not exact multiples of the array's size. The resultantimage has the same point set as A. Any extra computed values are ignored. Notice that each neighborhoodor template operation decreases the size of the subframe's valid region.Building an expression tree for a sequence of template and neighborhood operations requires four statevariables per dimension, the sum and maximum of the ld and rd values. The method for keeping track of thevalid region's size is clear. Adding another operation to an existing expression tree needs only the current
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Figure 6: The valid region of image-image operations is the intersection of the operands' valid regions.1 IA_Set< IA_Point<int> > domain =2 IA_boxy_pset (IA_Point<int> (0, 0),3 IA_Point<int> (255, 255));45 // Images A and B are to use the SIMD array, C and D6 // will inherit that property...7 IA_Image< IA_Set< IA_Point<int> >, int >8 A = IA_PIMImage9 (IA_Image< IA_Point<int>, int > (domain, 1)),10 B = IA_PIMImage11 (IA_Image< IA_Point<int>, int > (domain, 2)),12 C, D;1314 C = A + B;15 D = C * A;16 cout << sum (D);Figure 7: Because C is still in scope, evaluation of D also evaluates and stores C.root's state variables. The number of blocks to be transferred is compositional with these operations. Ingeneral, B is a function of the immediate history of the computation.Equation 2 only gives the number of subframes necessary for a sequence of template and neighborhoodoperations. Unary and image-scalar operations do not a�ect the valid region's size, so they can be introducedfreely. Operations between two images do a�ect the valid region as shown in �gure 6. The result's validregion is the intersection of the arguments' valid regions. The new state variables are the maximum valuesof the arguments' state variables. Note that the regions must be aligned consistently. In general, results oftemplate operations should be shifted back to their original points. This adds to the computational cost.The merges from image-image operations also add dependencies on the order of operations and introduce alimited form of shared subexpressions.5.1.2 Transfer TimeThe �nal cost of transferring the images depends on both the number of subframes and the time to transfereach subframe. Blocks are transferred for both operand and result images.Not all computations return a single result. Figure 7 shows one such case. The global reduction in line 15triggers evaluation of D, which in turn evaluates C. The results for C may be used again later, so they mustbe transferred back to the host. Had line 15 been written as D = (A + B) * A, the temporary result wouldbe out of scope by line 16, and the subresult of A + B would not be returned. The example is trivial, butreal code often contains unused temporaries for readability. Conservative dependency assumptions are a



10 Wilson, et. al.: An Image Algebra Based SIMD Image Processing Environment- -?���? -6Figure 8: This convolution path involves nine shift operations, eight for calculations and one for returningto the origin.signi�cant limitation of systems that do not modify the original source.For a general sequence of operations, the total transfer time into the array, Tin, and the total transfertime out of the array, Tout, areTin = B0BB@setup + XA2foperandsand masksg T (rep size(A))1CCA ; and Tout = B0@setup + XA2fresultsgT (rep size(A))1A ; (3)where rep size(A) is the size of the machine representation of A's values, and T (s) is the time needed to loadblock of representation size s onto the processor array. The setup time is the small time required to initiatethe transfer.Many architectures are designed for streaming data and instructions. The general, transparent methodattempted here must deal with the staccato bursts caused by intermediate return values and by delays inthe controlling program. These bursts often will produce nonlinear times from low-level setup costs. Hence,the values of T should be determined experimentally to counter possibly nonlinear transfer times.Note that the set of temporary results may change during execution. Results are not returned to host-sidevariables which have passed out of scope. At any given point in the tree, the Tout term determined duringcreation is an upper bound. Updating the Tout values and propagating the new values up the tree is similarto the shared-subexpression problem mentioned later.5.2 Cost of ComputationsThe cost of computation may be small compared to the cost of transferring the images, yet it must beconsidered as a portion of the total cost. With future pal or other simd systems, these costs may be muchcloser. Each operation has costs associated with each step of the computation. In this context, consider thesame mathematical operation on di�erent representation sizes to be di�erent operations.5.2.1 Image-Template OperationsFor general image-template products, A

 t, a template is treated as a sequence of points in the support andassociated values. Assume the support of all templates and neighborhoods �t on the array. The ordering ofthe sequence is given by the convolution paths. The �rst operation also initializes the accumulator image.The computation proceeds by shifting a pixel value to the target point, combining the entire subframe witheach template point's value, and reducing the intermediate result into the result subframe.The per-subframe cost of computing the general template product is the sum of the time to shift eachpixel value to the target point and the time to combine and reduce at the target point. This process isillustrated in �gure 8. Other convolution paths are possible. If there is an extra area of processor memoryavailable, the path can be split into two separate paths starting from di�erent template locations. The cost



Visual Communication and Image Processing 11of moving processing element memory into a bu�er negates the savings from a few shifts, so this optimizationis only useful when temporary space already exists.The cost C for computing an image-template product A

 t with B subframes isC = B �jtj�op time(�) + op time(
)�+ op time(shift) � jpathj� : (4)Section 5.1.1 mentions the need for a masking image with certain image-template operations. Themasking adds to the per-template-point operation time.5.2.2 Neighborhood OperationsNeighborhood operations are simply local reductions. They are computed as templates without the combi-nation operation. The cost C for a neighborhood product A
� n with B subframes isC = B �jnj op time(
) + op time(shift) � jpathj� : (5)5.2.3 Unary, Image-Scalar, Image-Image operationsOnce the necessary data resides on the processor array, unary, image-scalar, and image-image operationsare calculated through a single operation per block. The cost C for unary operations (opA), image-scalaroperations (s opA), and image-image operations (A1 opA2) isC = B � op time(op) (6)5.2.4 Global ReductionsGlobal reductions produce a scalar result. Most languages, including C++, have no capacity for delayingthe computation and storage of their basic types. Thus, all global reductions in the iac++ system mustbe evaluated immediately. The cost is immaterial for that purpose. Note that some common, importantoperations such as equality testing are essentially global reductions.If there were a method for delaying scalar results, global reductions could be considered neighborhoodreductions over an image's entire support. This breaks the assumption that supports are smaller than theprocessor array, requiring decomposition of the support.5.2.5 Functional CompositionCompositions between functions and images are currently not supported on the pal machine. Extendingsupport to general functions would place more restrictions on the source code. General functions will containmany sequential operations on types native to the client. With a stock C++ system, these operations cannotbe supported transparently.For instance, composing an integer-valued image with a function that adds one would require parallelizingthe application of the function. If the function worked with the standard int type, a stock compiler wouldproduce standard sequential code. The library would need a way to execute that speci�c code on each pe.No such facility exists for the pal, which has di�erent opcodes and data sizes than the host processor.6 Scheduling Evaluation of TreesThe costs discussed so far are accumulated as an expression tree is built. At some point, the delayedoperations must be evaluated. The system only knows the history of the computation so far, not the entirespan of computation. A new operation is potentially the optimum place to stop building the tree, so someheuristic must guide the system from the incomplete information available.



12 Wilson, et. al.: An Image Algebra Based SIMD Image Processing EnvironmentOne simple heuristic is to examine the average cost per operation in a tree. As long as adding a newoperation decreases the average cost, it can be delayed. If the new operation increases the average cost, thetree should be evaluated before the new operation is added.Template and neighborhood operations decrease the valid region and initially increase the number ofblocks to be transferred. Multiple operations can be performed per block, however, obviating the need forintermediate, temporary results. The two e�ects are balanced according to the time constants on a particularsystem. Unary and image-scalar operations will always decrease the average cost, so they will never triggeran evaluation.An image-image operation can increase the average cost by reducing the valid region. If it does, only oneof the two subtrees needs to be evaluated. One possible choice is to evaluate the subtree with the smallestvalid region. The smaller region cannot be delayed for many more image-template products, so this is agood choice when those operations predominate. Evaluating the subtree with the lower average cost is alsoattractive. The higher cost is likely to be decreased further than the lower. The lower average cost mightcorrespond to the larger valid region, however. A sampling of real examples will be necessary to determinewhich is more e�ective.Other possible heuristics include hysteresis extensions on the average cost to support small bumps or wait-ing until a result is required or the valid region is completely destroyed before partitioning the computation.The average-cost heuristic has the advantages of being somewhat simple and relatively intuitive.7 Possible ImprovementsSome of the assumptions made so far are not always suitable for real systems. Templates and neighborhoodsmay be larger than the processor array. One delayed computation may be shared by multiple expressiontrees. A mostly transparent system cannot detect these and modify the source program; it must deal withthem as they occur.The processor array and the sequential host only have �nite resources to devote to temporary results,as well. Most hosts have limited shared memory for transferring images, and most processor arrays havelimited on-board memory. Some algorithms use very little space on the host but need many temporaries onthe processor array. The resource needs of others are reversed. Using nodes from a pre-allocated node poolcontrols the resource use on both ends, but particular allocation strategies may be sub-optimal for certainalgorithms.7.1 Weak Template DecompositionNot all templates and neighborhoods will �t within a single subframe. The supports need to be decomposed,and the decomposed pieces need to be calculated separately and reduced together [30]. Image algebra alreadyrequires the reduction operator to be associative, so no ordering problems arise.If template t decomposes into templates t1 and t2, the template product becomesA

 t) (A

 t1) 
 translate(A

 t02): (7)The translate function is a general notation for lining up the appropriate subframes, and t02 is t2 with theorigin relocated to lie within the same subframe.If the subexpressionsA

 t1 and A

 t02 can be broken into the same blocks, the calculation can be pipelinedup to the number of temporary stores available in the array. Subframes could be loaded as needed and usedmultiple times before being replaced.



Visual Communication and Image Processing 131 // Say A, B, C, and D are defined as before,2 // and t1 and t2 are simple, small templates3 // of the appropriate type.45 C = linear_product (A, t1) + B;6 D = C * linear_product (A, t2);7 cout << sum (C);
A� t1 B A+ � t2*C D ) AC � t2*D

Figure 9: The global reduction of C will invalidate the state information for the tree rooted at D.7.2 Shared SubexpressionsShared subexpressions seem to o�er potential for further optimizations. However, they destroy the compo-sitional nature of the cost function. Expressions are no longer disjoint; they join to form a directed, acyclicgraph. We will loosely refer to the expression graphs as trees for the remainder of the paper.The evaluation of any subtree in an expression will invalidate the state information carried at the rootof the tree. Because subtrees can be shared between trees, evaluation of one expression's tree can triggerevaluation of a subtree within another expression's tree. Figure 9 shows how even a simple sequence ofoperations can invalidate state information.This is similar to the earlier problem of overestimating the number of intermediate results. The currentsolutions to both problems are to ignore them. The cost function composition method provides an upperbound. One extension which could tighten the bound would be to keep track of a limited number of parentsper node and update their state information. Future tests will show how many updates will be both usefuland feasible for practical algorithms.Subexpressions shared only within one tree do not su�er from early evaluation. They could provide extraloading optimizations, as seen in the support decomposition discussion.7.3 Finer OptimizationsThe cost estimate is an upper bound. Many �ne-tuning optimizations exist beyond the general frameworkpresented here. Some, such as always loading array-sized blocks of the image and shifting unused pieces intothe position for the next block, may save more time at considerable programming expense. Others, suchas tracking the origin of result blocks and shifting them to agree rather than always returning the resultto its origin, are of marginal savings and little programming expense. Any implementation must �nd anacceptable balance between the di�erent aspects of e�ciency [31].8 ExamplesAny cost model/heuristic pair must be evaluated in the context of numerous examples. Here we present twofairly simple ones, a Roberts edge detector and a 3-level wavelet transform. We are taking the simple cost



14 Wilson, et. al.: An Image Algebra Based SIMD Image Processing Environments = 1 �1 t = 1�1Figure 10: The templates s and t for the Roberts edge detector.model proposed above and combining it with a heuristic that dictates evaluation of a stored tree when addinga new operation would increase the average cost per operation. We also assume no shared subexpressions,so the implementation cost of this heuristic is very low. These algorithms are to run on a single board palsystem, so the array dimensions are 72� 64.8.1 Roberts Edge DetectorThe Roberts edge detector [27] consists of a simple, typical expression. The edge image E is derived froman input image A by e = p(A� s)2 + (A� t)2, where �gure 10 displays the templates s and t. The tablein �gure 11 shows how the estimated cost per operation Q varies as the tree grows when applying thealgorithm to a 1024 � 1024 image. Because the reduction identity, zero, is preserved by the combinationoperator, multiplication, there are no mask images in this example. The loading times, �i, and computationtimes, ci, are per block. The number of operations, ni, is tallied as if there are no shared subtrees. Forexample, n6 is n5+n3+1, ignoring the fact that the subtrees share their initial operation. The approximateaverage cost per operation at step i is then Qi = Bi(2�i + ci)=ni.The costs are approximately correct for a pal-i ioc/sa system. Two multiplications, two additions, andtwo shifts comprise the 2:37�10�5 seconds for each template. The extra 8:00�10�5 seconds included in thecomputation time of step 6 is the time required to move the result of step 3 into each pe's memory beforecontinuing. The 2:40� 10�3 seconds for loading a block assumes a throughput of around 8 mb/s to the palunit.Note that both the time to load a block and the number of operations are overestimated in step 6 of�gure 11. Each subtree is conservatively assumed not to share nodes. The actual average cost per operationis :210 seconds. Each node could maintain a dependency list and image-image operations could determinetheir costs more intelligently, but this imposes an extremely large overhead on computations that form longchains.Another important observation is that the cost of communication outweighs the cost of computation fora small expression by nearly two orders of magnitude. If every expression in an application is fairly small, aswhen each tree consists of less than 100 operations, updating the computational cost is needless overhead.One of the major factors attributing to the severe imbalance between computation and communicationcosts is the repeated transmission of data in the overlap regions. A simple cache hierarchy, like the 64 mbframe bu�er in the forthcoming ioc/fb, will let the system transfer the whole image once. This saves timenot only by sending each value once but also by better using the link's available bandwidth. The total timeto load will then be a function of only the image size plus a per-block constant on the order of 5 � 10�5seconds.8.2 Three-Level Wavelet TransformNext, examine a three-level wavelet transform on a 512�512 image A. Assume the base wavelet �lters havesix taps like Daubechies' W6 wavelet [32]. The supports of the high-pass �lters hi and low-pass �lters gi areshown in �gure 12. Here we ignore the negligible cost of computation and focus on the number of blocks tobe transmitted between the array and the host. Also, we only apply the transform along the x-dimensionfor simplicity.
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B n � c Q1 A 15� 16 1 240 0 1:152 � s 15� 17 2 �1 c1 + 2:37 :6153 �2 3 �2 c2 + 1:02 :4114 � t 15� 17 2 �1 c1 + 2:37 :6155 �2 3 �5 c4 + 1:02 :4116 + 15� 17 7 �5 + �3 c5 + c3+8:00 :3557 p� 8 �6 c6 + 2:88 :311Figure 11: The cost Q associated with the expression tree for p(A� s)2 + (A� t)2 strictly decreases. Thetimes for � and c are in units of 10�5 seconds, and the time for Q is in seconds.

h0 =g0 =h1 =g1 =h3 =g3 =Figure 12: The high-pass (hi) and low-pass (gi) �lters sample from successively farther locations. The shadedboxes form the non-zero support of each template.
1 S = IA_PIMImage (A);2 for (i = 0; i < 4; i++) {3 D[i] = linear_product (S, g[i]);4 S = linear_product (S, h[i]);5 } Figure 13: A short, simple wavelet decomposition along one dimension



16 Wilson, et. al.: An Image Algebra Based SIMD Image Processing Environmentmax lx max rx P lx P rx B n B=n1 A 0 0 0 0 8� 8 1 642 � g0 3 2 3 2 8� 8 2 323 �h0 2 3 2 3 8� 8 2 324 � g1 6 4 8 7 10� 8 3 26:65 �h1 4 6 6 9 10� 8 3 26:6<6 � g2 12 8 18 17 15� 8 4 3012 8 12 8 11� 8 2 447 �h2 8 12 8 12 11� 8 2 44Figure 14: Assuming the transfer cost overwhelms the computation cost, this expression tree's cost peroperation will increase after step 6, forcing evaluation of A� h0 � h1.Figure 13 holds the basic wavelet decomposition code. The arrays hold the similarly-named �lters foreach level i. As the server builds the tree in �gure 14, it maintains the maximum and sum of lx and rx overthe templates to be applied to the image. The total number of blocks B is calculated as in equation 2.When the server adds the � g2 operation to the tree, the total number of blocks transferred per operationincreases. The simple heuristic we use indicates that the delayed expression A�h0�h1 should be evaluated.As �gure 14 demonstrates, this evaluation decreases the number of blocks, but it also decreases the numberof operations. The average number of blocks transfered actually increases more when A � h0 � h1 is fullyevaluated. This suggests another possible heuristic: Evaluate when evaluation does not increase the costmore than another delay does.In the previous example, we counted the transfer time for both loading and returning the image data.The transfer cost out is substantial in the current example. A frame bu�er can hold the results and delayreturning them to the host. The potential savings for such algorithms as wavelet analysis, where the imageswill be �ltered and recombined before being returned, are great. A limited frame bu�er presents signi�cantchallanges for the cost model. The cost of managing the memory allocation should be included, especiallywith access from multiple clients. Currently, we ignore the return time and assume the result remains in theframe bu�er. This should be a fair approximation for algorithms that produce few temporary results andfor environments where few clients use the same ioc/fb unit.9 SummaryWe have presented a general, cost-based model for optimizing image processing operations for the palcomputer. We have shown how the operations of image algebra a�ect both the cost of computation ofresults on the pal and the cost of communication of data to the pal. The model balances these costs witha set of heuristics, scheduling expression evaluation on-the-
y.Clearly, there are many possible choices for heuristics and even for parameters within the heuristics.A systematic study of image processing algorithms should reveal which parameters work well for sets of
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