Exception Handling

Interfaces, Implementations, and Evaluation

David Bindel E. Jason Riedy

U.C. Berkeley

—



I What do we want?

We want to produce programs which can
detect exceptional conditions and
react to them.

We also want these programs to be

supported by our friendly neighborhood
programming environments and

amenable to optimization on current and future

platforms.



I Thesis

The standard specifies interface requirements
Interfaces have multiple good implementations
Good design is hard, but interface criteria include

Minimality

Orthogonality

Clarity

We prefer explicit and local control and data flow

—



I Outline

Motivating and rejected examples

Deferring debugging...
Survey of software interfaces
Hardware support
Hardware / software mapping
A scarecrow proposal



I Motivating / Archetypal Examples

Algorithms that exceptions make risky
abort, wasting minimal work (Eureka exit)

then possibly do something else (complex
multiply, scaling)

Slightly change the arithmetic
substitute a limit for an exceptional result
(continued fractions, replacement)
Soften the arithmetic’s boundaries

extend the dynamic range (long products,
counting mode)

Communicate the quality of a result |



I Rejected Examples

Any of the following could overly constrain our choices:

Supporting heavy modifications to the arithmetic.
UN, QV, etc.

Allowing extremely non-local, implicit control and
data flow.

Considering any particular hardware
implementation.

Requiring specific debugging tools...

—



I Deferring Debugging

General purpose tools handle uninitialized data.
Purify, valgrind, etc.

Different applications need different retrospective
diagnostic facilities.

We're not sure how to support future debugging
tools. (path-based, etc.)

We need to keep debugging in mind, but it is a “quality

of implementation” issue.



I Survey of Software Interfaces

Motivating and rejected examples
Survey of software interfaces

Try-catch

Flag testing

Explicit trapping

Substitution

Flag-carrying types

Conditional branching FP ops
Hardware support

Hardware / software mapping

A scarecrow proposal |



I Try-Catch

try {
fast and sloppy code

}

catch (exceptional cases) {
slow and careful

}

Floating-point mechanism exists in:
fomenu BASIC

Ada Common Lisp (optional)
Numerical Turing Borneo (specification)

—



I Try-Catch

Language aspects:
Scope is always specified as linguistic blocks.

Extent:
Can called functions also raise exceptions?
Are “thrown” exceptions specified statically?

How do callers / callees communicate which
exceptions are interesting?

Is the try block interrupted precisely?
Can execution be resumed or statements

restarted? |



I Try-Catch

Benefits:
Matches existing, non-FP practice.
Limits optimization impact to blocks.
Drawbacks:
Existing practice is often mis-managed.

—



I Try-Catch

Observations:

Case without resumption / restart can be
iImplemented through either traps or flags.

Catching invalid is often followed by testing
IN-scope variables to determine which invalid op
occurred.

B



I Flag-lesting

double f (double x) {
save environment
do work:

1f (flags raised) do alternate work;
restore environment

merge proper flags

return result

}
Exists in:

C99
Many platform-dependent libraries

Borneo (specification) |



I Flag-lesting

double f (double x) {
fenv t fenv;
feholdexcept (&fenv) ;
do work;
1f (flags raised) do alternate work;

fesetenv (&fenv) ;
return outl+out?2;

}
Exists in:

C99
Many platform-dependent libraries

Borneo (specification) |



I Flag-lesting

Language aspects:

Scope: Are flags set by block, or though a global
datum?

Extent: How do flags pass through subroutines?
Benefits:

Predictable control flow.
Drawbacks:

All operations share state.

Subexp movement and compile-time evaluation

often incorrect.
Flag tests clutter code. _l



I Flag-lesting

double f (double x) {

fenv_t fenv; feholdexcept (&fenv) ;
do work;

1f (flags raised) do alternate work;
fesetenv (&fenv) ;
return outl+out?2;

}
Observations:

Almost all uses follow the above pattern, including
a few operations to set output flags implicitly.

Compilers must virtualize and track flags for

optimization. |



I Explicit Trapping

Implementations Aspects
Sun’s libm9x Scope: dynamic
SIGFPE handling Extent: dynamic

(wmexcp, fpmenu)

Benefits Drawbacks
Unknown No portable interfaces
Nigh-impossible to use
Serious non-local, implicit

effects |



I Substitution

FPE PRESUB (FE INVALID,+INFINITY)
for (1 = 0; 1 < n i1tems; ++1)
newpricel[l] = pricel[l] + bidincr([i];
FPE END PRESUB

Exists in:
IEEE defaults
fomenu: presub and counting



I Substitution

FPE COUNT (&cnt)

for (1 = 0; 1

out *= A[1]
FPE_END COUNT

Exists in:
IEEE defaults
fomenu: presub and counting



I Substitution

Language aspects:

Static scope, but static or dynamic extent
How do you determine the replaced type?
DO you consider operands? Get the sign?

_ocation of count or other implicit operands?
Benefits:
Well-defined, can have very limited scope
Many implementation / optimization options
Drawbacks:

Only two functionalities out of how many? |



I ‘New’: Flag-Carrying Types

In the continued fraction code
double £, f1,

flagdouble r;
int 7;

r = d1/4d;

f1 = -r * d;

1if (!flagtest _and clear(r, INVALID))
continue;

// fixup

Explicit syntax for the desired result.
Useful when only a few items are flagged.

—



I Flag-Carrying Types

Language aspects:
Scope and extent match value types’.
Static typing = static flags
Relies on expression evaluation typing



I Flag-Carrying Types

Benefits;
Everything is explicit.
Optimizations use existing frameworks.
User control over which expressions require flags.
Programmers understand data-flow.
Drawbacks:
Verbose (sub- and dynamic typing help)
Observations:
Flagged compile-time constants keep flags.

Subexpressions can be lifted. |



I ‘New’:. Conditional Branch FP-Ops

complex operator* (complex x, complex V)

{
let

double operator* (double,double) =
trapping mult (double, OVERFLOW: ov_label,
UNDERFLOW: un_ label,
INVALID: not complex label) ;
double operator+ (double,double) =
trapping add (double, INVALID: infs label) ;
double operator- (double,double) =
trapping sub (double, INVALID: infs label) ;

in {
return complex (real (x)*real(y) - imag(x)*imag(y),
real (x) *imag(y) - 1mag(x)*real(y)) ;
}
ov_label:

We mentioned spaghetti code...



I Hardware Support

Motivating and rejected examples
Survey of software interfaces

Hardware support
Existing hardware: flags
Existing hardware: traps
Flags versus traps

Hardware / software mapping
A scarecrow proposal



I Existing HW: Flags

Basic operations:
Save registers
Restore registers
Test flags

One or more registers visible in ISA
May include “last instruction” flags

May be additional internal storage
e.g. with reorder buffer entry

B



I Existing HW: Traps

Basic operations:
Enable trapping
Disable trapping
Set handler

Currently require OS support
Need privileged mode to set handler
Handler runs in privileged mode

Trap enable/disable on IA32 costs more than flag

save/restore



I Klags versus Traps

Traps are an optimization for flag test and branch
But flag tests are reasonably inexpensive!
Flag tests need only occur at synchronization
points (identified by programmer or compiler)

There are other possible optimizations:
Execution predicated on flag settings
Conditional branch FP ops
And others. ..

Compiler could optimize away explicit tests

—



I HW/SW Mapping

Motivating and rejected examples
Survey of software interfaces
Hardware support

Hardware / software mapping
Extended range: a case study
fomenu implementation notes
Interfaces and implementations
Performance

A scarecrow proposal



I Extended Range: A Case Study

scaled double prod;
for (1 = 0; 1 < n; ++1)
prod *= al1i];

Extend range by implementing a scaled precision:
No exceptions: scale on every operation
Flags: test after each operation
Traps: use “counting mode”

Can optimize first two cases by blocking.

—



I Extended Range: A Case Study

scaled double prod;
for (1 = 0; 1 < n; 1 += BLOCK) {
prod_tmp = fast product over block
1f (no range exception)
prod *= prod_tmp;
else
prod *= gcaled subproduct

Compiler ideally generates this from previous code
Otherwise, little worse than blocking matrix codes

Could probably use similar automatic tuning |



I HW/SW _Mapping

fomenu:

Uses SIGFPE handler + ugly C macros to

iImplement try/catch and replacement

On exception
try/catch: restore state, jump to user
substitution: decode, compute, writeback
other: re-execute instruction

B



I HW/SW _Mapping

fomenu:
handler choice really needs compiler input
must manually add fwait instructions
makes most optimizations dangerous
context save penalty on try/catch entry

Instruction re-execution and toggling traps are both
expensive

Compiler support would help, but some problems are

intrinsic to trap-based handling.



I Interfaces and Implementations

Several implementations for software interfaces
Compile flag test and branch to trapping code

Implement try-catch handling with flag tests
Software resources need not map directly to HW
Map HW invalid flag to multiple software flags
Support flag-carrying types with virtualized flags
Merge local HW flags into virtual global register

We standardize interface requirements, not
implementations. Simple basic interfaces are easier to

reason about and permit adequate room to optimize. |



I Performance: Traps v. Flags

Platforms tested: PPro@233MHz, P3@800Mhz,
and P4@1.4GHz

Tested continued fractions, long products.

Results: Blocked flag tests are fine.
Blocked flag tests usually faster than trapping.

Immediate flag tests are considerably slower.
Detrimental in tight loops like long product.
Same as trapping in continued fractions.

Saving machine state for try-catch is slow.

—



I Scarecrow Proposal

Motivating and rejected examples
Survey of software interfaces
Hardware support

Hardware / software mapping

A scarecrow proposal



I Scarecrow Proposal

A scarecrow is a spooky outline of a straw-man.

SHALL be able to tie flags to value types.

Compilers already need this for optimizations.

Can use this to deliver information on exceptions
affecting results.

Generalizes to vectors in many ways.

—



I Scarecrow Proposal

Helpers:

SHALL provide a presubstitution mechanism
Presubstitute the result of an expression.
Any unhandled conditions remain raised.
Types are known.

SHALL provide scaled-exponent type

Many uses, can be heavily optimized.
Must explicitly determine the substitute’s sign.
Note that doubled-precisions don’t round correctly.

B



I Scarecrow Proposal

SHALL require programmers to declare interest in flags
Scope and extent?
All flags or particular flags?

SHALL provide an invalid hierarchy
MAY allow users to add conditions

Borneo’s admit-yields is a good example.
Static scope and extent flag declarations make

user-defined, software flags reasonabile.



I Scarecrow Proposal

edit Move exception handling optimizations to an
informative annex.

Describe fast trapping or conditional operations
as optimizations

edit Eliminate signaling NaNs.

Only current use of signaling NaNs: debugging.

—



End.

You're still here? Go home.



	What do we want?
	Thesis
	Outline
	Motivating / Archetypal Examples
	Rejected Examples
	Deferring Debugging
	Survey of Software Interfaces
	Try-Catch
	Try-Catch
	Try-Catch
	Try-Catch
	Flag-Testing
	Flag-Testing
	Flag-Testing
	Flag-Testing
	Explicit Trapping
	Substitution
	Substitution
	Substitution
	`New': Flag-Carrying Types
	Flag-Carrying Types
	Flag-Carrying Types
	`New': Conditional Branch FP-Ops
	Hardware Support
	Existing HW: Flags
	Existing HW: Traps
	Flags versus Traps
	HW/SW Mapping
	Extended Range: A Case Study
	Extended Range: A Case Study
	HW/SW Mapping
	HW/SW Mapping
	Interfaces and Implementations
	Performance: Traps v. Flags
	Scarecrow Proposal
	Scarecrow Proposal
	Scarecrow Proposal
	Scarecrow Proposal
	Scarecrow Proposal
	End.

