
Exception Handling
Interfaces, Implementations, and Evaluation

David Bindel E. Jason Riedy

U.C. Berkeley

Exception Handling – p.1/41



What do we want?

We want to produce programs which can
• detect exceptional conditions and
• react to them.

We also want these programs to be
• supported by our friendly neighborhood

programming environments and
• amenable to optimization on current and future

platforms.

Exception Handling – p.2/41



Thesis

• The standard specifies interface requirements
• Interfaces have multiple good implementations
• Good design is hard, but interface criteria include

• Minimality
• Orthogonality
• Clarity

• We prefer explicit and local control and data flow

Exception Handling – p.3/41



Outline

• Motivating and rejected examples
• Deferring debugging...

• Survey of software interfaces
• Hardware support
• Hardware / software mapping
• A scarecrow proposal

Exception Handling – p.4/41



Motivating / Archetypal Examples

• Algorithms that exceptions make risky
• abort, wasting minimal work (Eureka exit)
• then possibly do something else (complex

multiply, scaling)
• Slightly change the arithmetic

• substitute a limit for an exceptional result
(continued fractions, replacement)

• Soften the arithmetic’s boundaries
• extend the dynamic range (long products,

counting mode)
• Communicate the quality of a result

Exception Handling – p.5/41



Rejected Examples

Any of the following could overly constrain our choices:
• Supporting heavy modifications to the arithmetic.

• UN, OV, etc.
• Allowing extremely non-local, implicit control and

data flow.
• Considering any particular hardware

implementation.
• Requiring specific debugging tools...

Exception Handling – p.6/41



Deferring Debugging

• General purpose tools handle uninitialized data.
• Purify, valgrind, etc.

• Different applications need different retrospective
diagnostic facilities.

• We’re not sure how to support future debugging
tools. (path-based, etc.)

We need to keep debugging in mind, but it is a “quality
of implementation” issue.

Exception Handling – p.7/41



Survey of Software Interfaces

• Motivating and rejected examples
• Survey of software interfaces

• Try-catch
• Flag testing
• Explicit trapping
• Substitution
• Flag-carrying types
• Conditional branching FP ops

• Hardware support
• Hardware / software mapping
• A scarecrow proposal

Exception Handling – p.8/41



Try-Catch

try {
fast and sloppy code

}
catch (exceptional cases) {

slow and careful
}

Floating-point mechanism exists in:
• fpmenu
• Ada
• Numerical Turing

• BASIC
• Common Lisp (optional)
• Borneo (specification)

Exception Handling – p.9/41



Try-Catch

Language aspects:
• Scope is always specified as linguistic blocks.
• Extent:

• Can called functions also raise exceptions?
• Are “thrown” exceptions specified statically?

• How do callers / callees communicate which
exceptions are interesting?

• Is the try block interrupted precisely?
• Can execution be resumed or statements

restarted?

Exception Handling – p.10/41



Try-Catch

Benefits:
• Matches existing, non-FP practice.
• Limits optimization impact to blocks.

Drawbacks:
• Existing practice is often mis-managed.

Exception Handling – p.11/41



Try-Catch

Observations:
• Case without resumption / restart can be

implemented through either traps or flags.
• Catching invalid is often followed by testing

in-scope variables to determine which invalid op
occurred.

Exception Handling – p.12/41



Flag-Testing

double f (double x) {
save environment
do work;
if (flags raised) do alternate work;
restore environment
merge proper flags
return result

}
Exists in:

• C99
• Many platform-dependent libraries
• Borneo (specification)

Exception Handling – p.13/41



Flag-Testing

double f (double x) {
fenv_t fenv;
feholdexcept(&fenv);
do work;
if (flags raised) do alternate work;
fesetenv(&fenv);
return out1+out2;

}
Exists in:

• C99
• Many platform-dependent libraries
• Borneo (specification)

Exception Handling – p.14/41



Flag-Testing

Language aspects:
• Scope: Are flags set by block, or though a global

datum?
• Extent: How do flags pass through subroutines?

Benefits:
• Predictable control flow.

Drawbacks:
• All operations share state.
• Subexp movement and compile-time evaluation

often incorrect.
• Flag tests clutter code.

Exception Handling – p.15/41



Flag-Testing

double f (double x) {
fenv_t fenv; feholdexcept(&fenv);
do work;
if (flags raised) do alternate work;
fesetenv(&fenv);
return out1+out2;

}
Observations:

• Almost all uses follow the above pattern, including
a few operations to set output flags implicitly.

• Compilers must virtualize and track flags for
optimization.

Exception Handling – p.16/41



Explicit Trapping

Implementations
• Sun’s libm9x
• SIGFPE handling

(wmexcp, fpmenu)

Aspects
• Scope: dynamic
• Extent: dynamic

Benefits
• Unknown

Drawbacks
• No portable interfaces
• Nigh-impossible to use
• Serious non-local, implicit

effects

Exception Handling – p.17/41



Substitution

FPE_PRESUB(FE_INVALID,+INFINITY)
for (i = 0; i < n_items; ++i)
newprice[i] = price[i] + bidincr[i];

FPE_END_PRESUB

Exists in:
• IEEE defaults
• fpmenu: presub and counting

Exception Handling – p.18/41



Substitution

FPE_COUNT(&cnt)
for (i = 0; i < N; ++i)
out *= A[i] + B[i];

FPE_END_COUNT

Exists in:
• IEEE defaults
• fpmenu: presub and counting

Exception Handling – p.19/41



Substitution

Language aspects:
• Static scope, but static or dynamic extent
• How do you determine the replaced type?
• Do you consider operands? Get the sign?
• Location of count or other implicit operands?

Benefits:
• Well-defined, can have very limited scope
• Many implementation / optimization options

Drawbacks:
• Only two functionalities out of how many?

Exception Handling – p.20/41



‘New’: Flag-Carrying Types

In the continued fraction code:
double f, f1, ...;
flagdouble r;
int j;
...

r = d1/d;
f1 = -r * d;
if (!flagtest_and_clear(r, INVALID))

continue;
// fixup

...

• Explicit syntax for the desired result.
• Useful when only a few items are flagged.

Exception Handling – p.21/41



Flag-Carrying Types

Language aspects:
• Scope and extent match value types’.
• Static typing = static flags
• Relies on expression evaluation typing

Exception Handling – p.22/41



Flag-Carrying Types

Benefits;
• Everything is explicit.
• Optimizations use existing frameworks.
• User control over which expressions require flags.
• Programmers understand data-flow.

Drawbacks:
• Verbose (sub- and dynamic typing help)

Observations:
• Flagged compile-time constants keep flags.
• Subexpressions can be lifted.

Exception Handling – p.23/41



‘New’: Conditional Branch FP-Ops

complex operator* (complex x, complex y)
{

let
double operator*(double,double) =

trapping_mult(double, OVERFLOW: ov_label,
UNDERFLOW: un_label,
INVALID: not_complex_label);

double operator+(double,double) =
trapping_add(double, INVALID: infs_label);

double operator-(double,double) =
trapping_sub(double, INVALID: infs_label);

in {
return complex (real(x)*real(y) - imag(x)*imag(y),

real(x)*imag(y) - imag(x)*real(y));
}

ov_label:
...

}

• We mentioned spaghetti code... Exception Handling – p.24/41



Hardware Support

• Motivating and rejected examples
• Survey of software interfaces
• Hardware support

• Existing hardware: flags
• Existing hardware: traps
• Flags versus traps

• Hardware / software mapping
• A scarecrow proposal

Exception Handling – p.25/41



Existing HW: Flags

• Basic operations:
• Save registers
• Restore registers
• Test flags

• One or more registers visible in ISA
• May include “last instruction” flags

• May be additional internal storage
• e.g. with reorder buffer entry

Exception Handling – p.26/41



Existing HW: Traps

• Basic operations:
• Enable trapping
• Disable trapping
• Set handler

• Currently require OS support
• Need privileged mode to set handler
• Handler runs in privileged mode

• Trap enable/disable on IA32 costs more than flag
save/restore

Exception Handling – p.27/41



Flags versus Traps

• Traps are an optimization for flag test and branch
• But flag tests are reasonably inexpensive!
• Flag tests need only occur at synchronization

points (identified by programmer or compiler)
• There are other possible optimizations:

• Execution predicated on flag settings
• Conditional branch FP ops
• And others. . .

• Compiler could optimize away explicit tests

Exception Handling – p.28/41



HW/SW Mapping

• Motivating and rejected examples
• Survey of software interfaces
• Hardware support
• Hardware / software mapping

• Extended range: a case study
• fpmenu implementation notes
• Interfaces and implementations
• Performance

• A scarecrow proposal

Exception Handling – p.29/41



Extended Range: A Case Study

scaled_double prod;
for (i = 0; i < n; ++i)

prod *= a[i];

Extend range by implementing a scaled precision:
• No exceptions: scale on every operation
• Flags: test after each operation
• Traps: use “counting mode”

Can optimize first two cases by blocking.

Exception Handling – p.30/41



Extended Range: A Case Study

scaled_double prod;
for (i = 0; i < n; i += BLOCK) {

prod_tmp = fast product over block
if (no range exception)

prod *= prod_tmp;
else

prod *= scaled subproduct
}

• Compiler ideally generates this from previous code
• Otherwise, little worse than blocking matrix codes

• Could probably use similar automatic tuning

Exception Handling – p.31/41



HW/SW Mapping

fpmenu:
• Uses SIGFPE handler + ugly C macros to

implement try/catch and replacement
• On exception

• try/catch: restore state, jump to user
• substitution: decode, compute, writeback
• other: re-execute instruction

Exception Handling – p.32/41



HW/SW Mapping

fpmenu:
• handler choice really needs compiler input
• must manually add fwait instructions
• makes most optimizations dangerous
• context save penalty on try/catch entry
• instruction re-execution and toggling traps are both

expensive

Compiler support would help, but some problems are
intrinsic to trap-based handling.

Exception Handling – p.33/41



Interfaces and Implementations

Several implementations for software interfaces
• Compile flag test and branch to trapping code
• Implement try-catch handling with flag tests

Software resources need not map directly to HW
• Map HW invalid flag to multiple software flags
• Support flag-carrying types with virtualized flags
• Merge local HW flags into virtual global register

We standardize interface requirements, not
implementations. Simple basic interfaces are easier to
reason about and permit adequate room to optimize.

Exception Handling – p.34/41



Performance: Traps v. Flags

• Platforms tested: PPro@233MHz, P3@800Mhz,
and P4@1.4GHz

• Tested continued fractions, long products.
• Results: Blocked flag tests are fine.

• Blocked flag tests usually faster than trapping.
• Immediate flag tests are considerably slower.

• Detrimental in tight loops like long product.
• Same as trapping in continued fractions.

• Saving machine state for try-catch is slow.

Exception Handling – p.35/41



Scarecrow Proposal

• Motivating and rejected examples
• Survey of software interfaces
• Hardware support
• Hardware / software mapping
• A scarecrow proposal

Exception Handling – p.36/41



Scarecrow Proposal

A scarecrow is a spooky outline of a straw-man.

SHALL be able to tie flags to value types.

• Compilers already need this for optimizations.
• Can use this to deliver information on exceptions

affecting results.
• Generalizes to vectors in many ways.

Exception Handling – p.37/41



Scarecrow Proposal

Helpers:
SHALL provide a presubstitution mechanism

• Presubstitute the result of an expression.
• Any unhandled conditions remain raised.
• Types are known.

SHALL provide scaled-exponent type

• Many uses, can be heavily optimized.
• Must explicitly determine the substitute’s sign.
• Note that doubled-precisions don’t round correctly.

Exception Handling – p.38/41



Scarecrow Proposal

SHALL require programmers to declare interest in flags
• Scope and extent?
• All flags or particular flags?

SHALL provide an invalid hierarchy
MAY allow users to add conditions

• Borneo’s admit-yields is a good example.
• Static scope and extent flag declarations make

user-defined, software flags reasonable.

Exception Handling – p.39/41



Scarecrow Proposal

edit Move exception handling optimizations to an
informative annex.
• Describe fast trapping or conditional operations

as optimizations
edit Eliminate signaling NaNs.

• Only current use of signaling NaNs: debugging.

Exception Handling – p.40/41



End.

You’re still here? Go home.

Exception Handling – p.41/41


	What do we want?
	Thesis
	Outline
	Motivating / Archetypal Examples
	Rejected Examples
	Deferring Debugging
	Survey of Software Interfaces
	Try-Catch
	Try-Catch
	Try-Catch
	Try-Catch
	Flag-Testing
	Flag-Testing
	Flag-Testing
	Flag-Testing
	Explicit Trapping
	Substitution
	Substitution
	Substitution
	`New': Flag-Carrying Types
	Flag-Carrying Types
	Flag-Carrying Types
	`New': Conditional Branch FP-Ops
	Hardware Support
	Existing HW: Flags
	Existing HW: Traps
	Flags versus Traps
	HW/SW Mapping
	Extended Range: A Case Study
	Extended Range: A Case Study
	HW/SW Mapping
	HW/SW Mapping
	Interfaces and Implementations
	Performance: Traps v. Flags
	Scarecrow Proposal
	Scarecrow Proposal
	Scarecrow Proposal
	Scarecrow Proposal
	Scarecrow Proposal
	End.

