
STING: Spatio-Temporal Interaction Networks
and Graphs for Intel Platforms
David Bader, Jason Riedy, Henning Meyerhenke, David
Ediger

29 August 2011

Outline

Motivation

Technical
Overall streaming approach
Clustering coefficients
Connected components
Community detection (in progress)

Related
Pasqual, a scalable de novo sequence assembler

Plans

2 / 32

Exascale Data Analysis

Health care Finding outbreaks, population epidemiology

Social networks Advertising, searching, grouping

Intelligence Decisions at scale, regulating algorithms

Systems biology Understanding interactions, drug design

Power grid Disruptions, conservation

Simulation Discrete events, cracking meshes

3 / 32

Graphs are pervasive

• Sources of massive data: petascale simulations, experimental
devices, the Internet, scientific applications.

• New challenges for analysis: data sizes, heterogeneity,
uncertainty, data quality.

Astrophysics
Problem Outlier detection
Challenges Massive data
sets, temporal variation
Graph problems Matching,
clustering

Bioinformatics
Problem Identifying target
proteins
Challenges Data
heterogeneity, quality
Graph problems Centrality,
clustering

Social Informatics
Problem Emergent behavior,
information spread
Challenges New analysis,
data uncertainty
Graph problems Clustering,
flows, shortest paths

4 / 32

http://physics.nmt.edu/images/astro/hst_starfield.jpg
http://www.visualcomplexity.com
http://www.visualcomplexity.com

These are not easy graphs.
Yifan Hu’s (AT&T) visualization of the Livejournal data set

5 / 32

http://www2.research.att.com/~yifanhu/GALLERY/GRAPHS/GIF_SMALL/SNAP@soc-LiveJournal1.html

Overall streaming approach

Protein interactions, Giot et al., “A Protein
Interaction Map of Drosophila melanogaster”,
Science 302, 1722-1736, 2003.

Jason’s network via LinkedIn Labs

Assumptions

• A graph represents some real-world phenomenon.
• But not necessarily exactly!
• Noise comes from lost updates, partial information, ...

6 / 32

http://inmaps.linkedinlabs.com/share/Jason_Riedy/135243263311536682812471775171414573322

Overall streaming approach

Protein interactions, Giot et al., “A Protein
Interaction Map of Drosophila melanogaster”,
Science 302, 1722-1736, 2003.

Jason’s network via LinkedIn Labs

Assumptions

• We target massive, “social network” graphs.
• Small diameter, power-law degrees
• Small changes in massive graphs often are unrelated.

6 / 32

http://inmaps.linkedinlabs.com/share/Jason_Riedy/135243263311536682812471775171414573322

Overall streaming approach

Protein interactions, Giot et al., “A Protein
Interaction Map of Drosophila melanogaster”,
Science 302, 1722-1736, 2003.

Jason’s network via LinkedIn Labs

Assumptions

• The graph changes but we don’t need a continuous view.
• We can accumulate changes into batches...
• But not so many that it impedes responsiveness.

6 / 32

http://inmaps.linkedinlabs.com/share/Jason_Riedy/135243263311536682812471775171414573322

Difficulties for performance

• What partitioning
methods apply?

• Geometric? Nope.
• Balanced? Nope.
• Is there a single, useful

decomposition? Not
likely.

• Some partitions exist, but
they don’t often help
with balanced bisection or
memory locality.

• Performance needs new
approaches, not just
standard scientific
computing methods.

Jason’s network via LinkedIn Labs

7 / 32

http://inmaps.linkedinlabs.com/share/Jason_Riedy/135243263311536682812471775171414573322

STING’s focus

Source data

predictionaction

summary

Control

VizSimulation / query

• STING manages queries against changing graph data.
• Visualization and control often are application specific.

• Ideal: Maintain many persistent graph analysis kernels.
• Keep one current snapshot of the graph resident.
• Let kernels maintain smaller histories.
• Also (a harder goal), coordinate the kernels’ cooperation.

8 / 32

STING and STINGER

Pre-process batch:
Sort by source vertex,

reconcile ins/del.

Pre-change hook

Alter graph (may “age off”old edges)

Post-change hook

STINGER
graph

Batch of insertions / deletions

Affected vertices

Change in metric

• Batches provide dual-level parallelism.
• Busy loci of change: Know to share the busy points.
• Scattered changes: Parallel across (likely) independent changes.

• The massive graph is maintained in a data structure named
STINGER.

9 / 32

STINGER

STING Extensible Representation:

• Rule #1: No explicit locking.
• Rely on atomic operations.

• Massive graph: Scattered updates, scattered reads rarely
conflict.

• Use time stamps for some view of time.

10 / 32

Initial results

Prototype STING and STINGER

Monitoring the following properties:

1 clustering coefficients,

2 connected components, and

3 community structure (in progress).

High-level

• Support high rates of change, over 10k updates per second.

• Performance scales somewhat with available processing.

• Gut feeling: Scales as much with sockets as cores.

http://www.cc.gatech.edu/~bader/code.html

11 / 32

http://www.cc.gatech.edu/~bader/code.html

Experimental setup

Unless otherwise noted

Line Model Speed (GHz) Sockets Cores

Nehalem X5570 2.93 2 4
Westmere E7-8870 2.40 4 10

• Westmere loaned by Intel (thank you!)

• All memory: 1067MHz DDR3, installed appropriately

• Implementations: OpenMP, gcc 4.6.1, Linux ≈ 3.0 kernel

• Artificial graph and edge stream generated by
R-MAT[Chakrabarti, et al.].

• Scale x , edge factor f ⇒ 2x vertices, ≈ f · 2x edges.
• Edge actions: 7/8th insertions, 1/8th deletions
• Results over five batches of edge actions.

• Caveat: No vector instructions, low-level optimizations yet.

12 / 32

Clustering coefficients

• Used to measure
“small-world-ness”[Watts and Strogatz]
and potential community structure

• Larger clustering coefficient ⇒ more
inter-connected

• Roughly the ratio of the number of actual
to potential triangles

v

i

j

m

n

• Defined in terms of triplets.

• i – v – j is a closed triplet (triangle).

• m – v – n is an open triplet.

• Clustering coefficient:
of closed triplets / total # of triplets

• Locally around v or globally for entire graph.

13 / 32

Updating triangle counts

Given Edge {u, v} to be inserted (+) or deleted (-)

Approach Search for vertices adjacent to both u and v , update
counts on those and u and v

Three methods

Brute force Intersect neighbors of u and v by iterating over each,
O(dudv) time.

Sorted list Sort u’s neighbors. For each neighbor of v , check if in
the sorted list.

Compressed bits Summarize u’s neighbors in a bit array. Reduces
check for v ’s neighbors to O(1) time each.
Approximate with Bloom filters. [MTAAP10]

All rely on atomic addition.

14 / 32

Batches of 10k actions

Threads
Graph size: scale 22, edge factor 16

U
pd

at
es

 p
er

 s
ec

on
ds

, b
ot

h
m

et
ric

 a
nd

 S
T

IN
G

E
R

103.5

104

104.5

105

105.5

Brute force

●

●

●
●

5.1e+03

1.7e+04 3.4e+04

3.9e+03

1.5e+04

0 20 40 60 80

Bloom filter

●●

●●●
●●●

●●●

●

●●●

●

●●

2.4e+04

8.8e+04 1.2e+05

2.0e+04

1.3e+05

0 20 40 60 80

Sorted list

●

●
●

●●●

●

●

●●●

●●

●●

●●●

●

●

●

●●●

● ●

●

●●

●●

2.2e+04

8.8e+04 1.4e+05

1.7e+04

1.2e+05

0 20 40 60 80

Machine

a 4 x E7−8870

a 2 x X5570

15 / 32

Different batch sizes

Threads
Graph size: scale 22, edge factor 16

U
pd

at
es

 p
er

 s
ec

on
ds

, b
ot

h
m

et
ric

 a
nd

 S
T

IN
G

E
R

103.5

104

104.5

105

105.5

103.5

104

104.5

105

105.5

103.5

104

104.5

105

105.5

Brute force

●●●

●

●

●●

●

●

●●

●●

●

●

●

●

●●●●●●●●
●

●

●

●
●●

●

●

●●

0 20 40 60 80

Bloom filter

●

●

●

●

●

●●

●
●
●
●

●

●

●●●

●●
●●
●

● ●

●

●●
●●● ●●●

●●●

●
●●●

●

●●

0 20 40 60 80

Sorted list

●
●
●

●

●

●
●

●

●●

●

●
●●●●

●●

●

●●
●●●

●
●
●●●

●●

●●

●●●

●

●

●
●●●
● ● ●

●●
●●

0 20 40 60 80

100
1000

10000

Machine

4 x E7−8870

2 x X5570

16 / 32

Connected components

• Maintain a mapping from vertex to
component.

• Global property, unlike triangle
counts

• In “scale free” social networks:
• Often one big component, and
• many tiny ones.

• Edge changes often sit within
components.

• Remaining insertions merge
components.

• Deletions are more difficult...

17 / 32

Connected components

• Maintain a mapping from vertex to
component.

• Global property, unlike triangle
counts

• In “scale free” social networks:
• Often one big component, and
• many tiny ones.

• Edge changes often sit within
components.

• Remaining insertions merge
components.

• Deletions are more difficult...

17 / 32

Connected components: Deleted edges

The difficult case
• Very few deletions

matter.

• Determining which
matter may require a
large graph search.

• Re-running static
component
detection.

• (Long history, see
related work in
[MTAAP11].)

• Coping mechanisms:
• Heuristics.
• Second level of

batching.

18 / 32

Deletion heuristics

Rule out effect-less deletions
• Use the spanning tree by-product of static connected

component algorithms.

• Ignore deletions when one of the following occur:

1 The deleted edge is not in the spanning tree.
2 If the endpoints share a common neighbor∗.
3 If the loose endpoint can reach the root∗.

• In the last two (∗), also fix the spanning tree.

Rules out 99.7% of deletions.

19 / 32

Connected components: Performance

Threads
Graph size: scale 22, edge factor 16

U
pd

at
es

 p
er

 s
ec

on
ds

, b
ot

h
m

et
ric

 a
nd

 S
T

IN
G

E
R

103

104

105

106

103

104

105

106

103

104

105

106

2.4e+03 1.6e+04 6.4e+03
3.2e+03 2.0e+03

1.7e+04 7.7e+04 1.4e+04
1.9e+04 2.0e+04

5.8e+04 1.3e+05 1.5e+05
5.5e+04 1.1e+05

12 4 6 8 12 16 24 32 40 48 56 64 72 80

100
1000

10000

Machine

a 4 x E7−8870

a 2 x X5570

20 / 32

Community detection (work in progress)

Greedy, agglomerative partitioning

• Partition to maximize modularity, minimize conductance, ...

Seed set expansion

• Grow an optimal / ”relevant” community around selection.

• (Work with Jonny Dimond of KIT.)

21 / 32

Agglomerative community detection

Parallel greedy, agglomerative partitoning [PPAM11]

• Score edges by optimization criteria.

• Chose a maximal, heavy-weight matching.
• Negate edge scores if minimizing conductance.

• Contract those edges.

• Mimics sequential optimizers, but produces different results.

22 / 32

Performance

• R-MAT on right.

• Livejournal
• 15M vertex,

184M edge
• 6-12 hours on

E7-8870

• Highly variable
performance.

• Algorithm under
development.

Processors

T
im

e
(h

ou
rs

)

1.0

1.5

2.0

2.5

●

●

●

●
●

22 23 24 25 26

Modularity

● 0.284

● 0.286

● 0.288

● 0.290

● 0.292

● 0.294

● 0.296

● 0.298

CPU

● Dual X5570 (2.93GHz)

Quad E7−8870 (2.40GHz)

23 / 32

Related: Pasqual

A scalable de novo assembler

Work by Henning Meyerhenke, Xing Liu, Pushkar Pande.

• Next-generation sequencers produce mountains of small gene
sequences.

• Assembling into a genome: Yet another large graph problem.

• Pasqual forms a compressed overlap graph and traces paths.

• Only scalable and correct shared-memory assembler.
• Faster and uses less memory than other existing systems.
• Evaluation against the few distributed assemblers is ongoing.

http://www.cc.gatech.edu/pasqual/

24 / 32

http://www.cc.gatech.edu/pasqual/

Human genome, 33.5Mbp (cov 30)

Similar speed, better results

Length Code Time (min) N50 (bp) Errors

35 Velvet >12h 1355 683
Edena 451.15 1375 3
ABySS 56.52 1412 521
SOAPdenovo 15.62 1470 485
Pasqual 15.50 1451 5

100 Velvet 132.68 6635 175
Edena 466.12 6545 7
ABySS 92.92 6229 136
SOAPdenovo 18.05 6879 142
Pasqual 19.15 7712 6

25 / 32

Zebrafish, 61Mbp (cov 30)

Far better speed and results

Length Code Time (min) N50 (bp) Errors

100 Velvet 256.02 4045 799
Edena >12h 2661 0
ABySS — — —
SOAPdenovo 31.83 3998 725
Pasqual 57.27 4535 0

200 Velvet — — —
Edena — — —
ABySS — — —
SOAPdenovo — — —
Pasqual 38.07 7911 0

26 / 32

Performance v. SOAPdenovo

Threads

T
im

e

102.5

103

103.5

104

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

 21.70m

 5.97m

 40.32m

 9.62m

 97.38m

 4.65m

166.67m

 7.22m

12 4 8 16 32 40 64 80

Coverage

● 30

● 50

Code

● SoapDenovo

Pasqual

27 / 32

Speed-up

Threads

S
pe

ed
up

0

5

10

15

20

25

●●
●

●

● ●
●

●

●●
●

●

●
●

●
● 3.64x

 4.19x

20.94x

23.09x

12 4 8 16 32 40 64 80

Coverage

● 30

● 50

Code

● SoapDenovo

Pasqual

28 / 32

Plans

Community detection Improving the algorithm, pushing into
streaming by de-agglomerating and restarting.

Seed set expansion Maintaining not only one expanded set, but
multiple for high-throughput monitoring.

Microbenchmarks Expand on initial promising work on
characterizing performance by peak number of
memory operations achieved, find bottlenecks by
comparing with microbenchmarks.

Distributed/PGAS STINGER fits a PGAS model well (think SCC).
Interested in exploring distributed algorithms.

Packaging Wrap STING into an easily downloaded and installed
tool.

29 / 32

Bibliography I

D. Ediger, K. Jiang, E. J. Riedy, and D. A. Bader.
Massive streaming data analytics: A case study with clustering
coefficients.
In Proceedings of the Workshop on Multithreaded Architectures
and Applications (MTAAP’10), Apr. 2010.

D. Ediger, E. J. Riedy, and D. A. Bader.
Tracking structure of streaming social networks.
In Proceedings of the Workshop on Multithreaded Architectures
and Applications (MTAAP’11), May 2011.

K. Madduri and D. A. Bader.
Compact graph representations and parallel connectivity
algorithms for massive dynamic network analysis.
In 23rd IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Rome, Italy, May 2009.

30 / 32

Bibliography II

E. J. Riedy, D. A. Bader, K. Jiang, P. Pande, and R. Sharma.
Detecting communities from given seeds in social networks.
Technical Report GT-CSE-11-01, Georgia Institute of
Technology, Feb. 2011.

E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader.
Parallel community detection for massive graphs.
In Proceedings of the 9th International Conference on Parallel
Processing and Applied Mathematics, Torun, Poland, Sept.
2011.

31 / 32

References I

D. Chakrabarti, Y. Zhan, and C. Faloutsos.
R-MAT: A recursive model for graph mining.
In Proc. 4th SIAM Intl. Conf. on Data Mining (SDM), Orlando,
FL, Apr. 2004. SIAM.

D. J. Watts and S. H. Strogatz.
Collective dynamics of ‘small-world’ networks.
Nature, 393(6684):440–442, Jun 1998.

32 / 32

	Motivation
	Technical
	Related
	Plans

