
Extra-precise Iterative Refinement for Overdetermined Least

Squares Problems∗

James Demmel† Yozo Hida‡ Xiaoye S. Li§ E. Jason Riedy¶

May 30, 2007

Abstract

We present the algorithm, error bounds, and numerical results for extra-precise iterative
refinement applied to overdetermined linear least squares (LLS) problems. We apply our linear
system refinement algorithm to Björck’s augmented linear system formulation of an LLS prob-
lem. Our algorithm reduces the forward normwise and componentwise errors to O(ε) unless the
system is too ill conditioned. In contrast to linear systems, we provide two separate error bounds
for the solution x and the residual r. The refinement algorithm requires only limited use of extra
precision and adds only O(mn) work to the O(mn2) cost of QR factorization for problems of
size m-by-n. The extra precision calculation is facilitated by the new extended-precision BLAS
standard in a portable way, and the refinement algorithm will be included in a future release of
LAPACK and can be extended to the other types of least squares problems.

1 Background

This article presents the algorithm, error bounds, and numerical results of the extra-precise iterative
refinement for overdetermined least squares problem (LLS):

min
x
‖b−Ax‖2 (1)

where A is of size m-by-n, and m ≥ n.
The xGELS routine currently in LAPACK solves this problem using QR factorization. There

is no iterative refinement routine. We propose to add two routines: xGELS_X (expert driver) and
xGELS_RFSX (iterative refinement). In most cases, users should not call xGELS_RFSX directly.

Our first goal is to obtain accurate solutions for all systems up to a condition number threshold
of O(1/ε) with asymptotically less work than finding the initial solution. To this end, we first
∗This research was supported in part by the NSF Grant Nos. CCF-0444486, EIA-0122599, and CNS-0325873; the

DOE Grant Nos. DE-FC02-01ER25478 and DE-FC02-06ER25786. The authors wish to acknowledge the contribu-
tion from Intel Corporation, Hewlett-Packard Corporation, IBM Corporation, and the NSF EIA-0303575 in making
hardware and software available for the CITRIS Cluster which was used in producing these research results.
†demmel@cs.berkeley.edu, Computer Science Division and Mathematics Dept., University of California, Berkeley,

CA 94720.
‡yozo@cs.berkeley.edu, Computer Science Division, University of California, Berkeley, CA 94720.
§xsli@lbl.gov, Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
¶ejr@cs.berkeley.edu, Computer Science Division, University of California, Berkeley, CA 94720.

1

compute the QR factorization and obtain the initial solution in hardware-supported fast arithmetic
(e.g., single or double precisions). We refine the initial solution with selective use of extra precision.
The extra-precise calculations may use slower software arithmetic, e.g. doubled-double [2] when
working precision already is double. Our second goal is to provide reliable error bounds for the
solution vector x as well as the residual vector r.

As we will show, we can provide dependable error estimates and small errors for both x and
r whenever the problems are acceptably conditioned. In this paper the phrase acceptably condi-
tioned will mean the appropriate condition number is no larger than the threshold cond thresh =

1
10·max{10,

√
m+n}·ε , and ill conditioned will mean the condition number is larger than this threshold.

If the problem is ill conditioned, either because the matrix itself is nearly singular or because the
vector x or r is ill conditioned (which can occur even if A is acceptably conditioned), then we cannot
provide any guarantees. Furthermore, we can reliably identify whether the problem is acceptably
conditioned for the error bounds to be both small and trustworthy. We achieve these goals by first
formulating the LLS problem as an equivalent linear system [5], then applying our linear system
iterative refinement techniques that we developed previously [8].

2 Extra-precise Iterative Refinement

In this section, we present the equivalent linear system formulation for the LLS problem, and we
adapt a linear system iterative refinement procedure to refine the solution of the LLS problem.

2.1 Linear system formulation

The LLS problem is equivalent to solving the following augmented linear system of dimension
m+ n [3, 6]: (

Im A
AT 0

)(
r
x

)
=
(
b
0

)
(2)

Then, we can apply our extra-precise iterative refinement algorithm [8] to linear system (2) to
obtain more accurate vectors x and r. Algorithm 1 shows a high-level sketch of the refinement
procedure.

We monitor the progress of both the solution vector x and the residual vector r to provide small
infinity-norm relative normwise and componentwise errors (unless the system is too ill conditioned).

Here, the QR factorization of A and the solution for the updates in Step (2) are carried out in
working precision εw. By “doubled arithmetic” we mean the precision used is twice the working
precision, which we denote as εd. In our numerical experiments, we use IEEE-754 single precision
as the working precision (εw = 2−24) and IEEE-754 double precision in our residual calculations
(εd = 2−53). All the extra-precise calculations are encapsulated in the extended precision BLAS
library (XBLAS) [13].

2

Algorithm 1
Obtain the first solution x(1) using QR factorization of A,

and compute the first LLS residual r(1) = b−Ax(1).
Repeat

(1) Compute the residual vectors s(i) and t(i): (may be in doubled arithmetic)
s(i) = b− r(i) −Ax(i)

t(i) = −AT r(i)
(2) Solve for the corrections dr(i) and dx(i) using the existing QR factorization A:(

Im A
AT 0

)(
dr(i)

dx(i)

)
=
(
s(i)

t(i)

)
(3) Update the solution vectors: (may be in doubled arithmetic)

r(i+1) = r(i) + dr(i)

x(i+1) = x(i) + dx(i)

i = i+ 1
Until r(i) and/or x(i) “accurate enough”

2.2 Extra precision

Our extra-precise iterative refinement algorithm not only computes the residual in extended preci-
sion but also may carry the solution vector [r;x] in doubled precision. Therefore, in Step (1), the
first residual is computed as:

s(i) = b− (r(i) + r
(i)
t)−A(x(i) + x

(i)
t) (3)

where rt and xt are used to store the “tails” of each floating point component of r and x.
We have extended the XBLAS with a new routine to compute this portion of the residual. The

existing xGEMV2_X sufficies to compute the other portion, t(i) = AT (r(i) + r
(i)
t).

2.3 Solving the augmented system

As in the case of linear system, Step (2) can be done inexpensively using the existing factorization.

Assume that we have computed the QR factorization of A, i.e, A = Q

(
R
0

)
, where Q ≡ (Q1, Q2)

is an orthogonal matrix of dimension m-by-m, Q1 is of dimension m-by-n, Q2 is of dimension
m-by-(m − n), and R is an upper triangular matrix of dimension n-by-n. Then, Step (2) of each
iteration involves solving a linear system of the form Im Q

(
R
0

)
(
RT 0

)
QT 0

(u
v

)
=
(
s
t

)
. (4)

The above augmented matrix can be written in factored form:(
Q

In

) 0 0 In
0 Im−n 0
In 0 0

 RT 0 0
0 Im−n 0
In 0 R

(QT

In

)(
u
v

)
=
(
s
t

)
. (5)

3

The solution vector [u; v] is then obtained by:

(
u
v

)
=
(
Q

In

) R−T 0 0
0 Im−n 0

−R−1R−T 0 R−1

 0 0 In
0 Im−n 0
In 0 0

(QT

In

)(
s
t

)
.

(6)

Since QT s =
(
QT1 s
QT2 s

)
, we define c = QT1 s and d = QT2 s, where the vectors c and d are of respective

size n and m− n, then,

(
u
v

)
=
(
Q

In

) R−T 0 0
0 Im−n 0

−R−1R−T 0 R−1

 t
d
c

 . (7)

Therefore, the following procedure computes the vectors u and v:

c = QT1 s, d = QT2 s, e = R−T t, v = R−1(c− e), u = Q

(
e
d

)
. (8)

The cost amounts to two triangular solves, two applications of Q, and one vector-sum, totalling to
O(mn) work per iteration.

2.4 Stopping and solution acceptance criteria

Björck and Golub [6] suggested that the iteration be terminated when the conditions (i) (for x)
and (ii) (for r) below are simultaneously satisfied:

(i) ‖dx(i)‖2 ≥ 0.125‖dx(i−1)‖2 or ‖dx(i)‖2 ≤ ε‖x(0)‖2
(ii) ‖dr(i)‖2 ≥ 0.125‖dr(i−1)‖2 or ‖dr(i)‖2 ≤ ε‖r(0)‖2

This means that for both x and r, we can terminate the iteration either when it does not make
enough progress (first set of inequalities), or when convergence occurs (second set of inequalities).
Note that there is a small pitfall in the convergence test, because the correction dx(i) is compared
with the first solution x(0) (or r(0)), not the current solution x(i). If x(0) is completely wrong, the
algorithm may converge too early.

A significant class of uses involve nearly consistent systems where the true residual r is nearly
zero. Requiring convergence by measuring ‖dr‖ relative to ‖r‖ is too stringent. A tiny residual
often will be considered ill conditioned, so we should not require excessive calculations in this fairly
common case. Because Ax = b + r, a small ‖dr‖2 relative to ‖b‖2 indicates convergence in the
range. Therefore, we propose to use the following as one of the stopping criteria:

‖dr(i)‖ ≤ ε‖b‖

Our algorithm attempts to achieve small errors for both r and x, and in both normwise and
componentwise measures. In other words, for those users who do want r as accurately as possible,
we will also try to compute r with a small componentwise error. We will use the following quantities
in stopping criteria:

4

Accepted Rejected
condition estimate ≥ cond thresh X
solution & norm not converged X
converged and cond. est. < cond thresh X

Table 1: Summary of conditions where a particular solution and norm are accepted as accurate.
cond thresh = 1

10·max{10,
√
m+n}·ε .

• For normwise error, we will scale r by 1/‖b‖∞, and x by 1/‖x‖∞.

• For componentwise error, we will scale each ri by 1/|ri|, and each xi by 1/|xi|.
We use two state variables x-state and r-state (∈ {working, converged, no-progress}) to track

normwise convergence status for x and r, and two other state variables xc-state and rc-state (∈
{unstable, working, converged, no-progress}) to track componentwise convergence status for x and
r. Fig. 1 depicts the state transition diagrams for both normwise (Fig. 1(a)) and componentwise
(Fig. 1(b)) convergence statuses.

The normwise state variable x-state (or r-state) is initialized to be in working state. The state
of x is changed to converged when the correction dx(i+1) is too small to change the solution xi

much (condition dx x def= ‖dx(i+1)‖/‖xi‖ ≤ ε). When convergence slows down sufficiently (condition
dxrat

def= ‖dx(i+1)‖/‖dx(i)‖ > ρthresh), the state is changed from working to no-progress. The iteration
may continue because the other state variables are still making progress, thus, the no-progress state
may change back to working state when convergence becomes faster again (condition dxrat ≤
ρthresh).

The componentwise state variable xc-state (or rc-state) is initialized to be in unstable state,
meaning that each component of the solution has not settled down for convergence testing. When
all the components are settled down (condition dxc(i+1) def= maxj |dx(i+1)

j /xij | ≤ cthresh), the state is
changed from unstable to working. cthresh is the threshold below which the solution is considered
stable enough for testing the componentwise convergence, and dxcrat

def= dxc(i+1)/dxc(i). The rest
of the state transitions follow the rules similar to those of the normwise case.

Finally, we terminate the refinement iteration when all four state variables (x-state, r-state,
xc-state, and rc-state) are no longer in working state, or when an iteration count threshold is
reached. Thus, we are simultaneously testing four sets of stopping criteria—as long as at least one
of the four state variables is in working state, we continue iterating.

Once the algorithm has terminated, we evaluate the conditioning of each solution in both norm-
and componentwise senses. If the solution is acceptably conditioned and the algorithm terminated
in the converged state for that norm, we accept the result as accurate. Otherwise we reject the
solution. Our current implementation returns an error estimate of 1.0 to signify rejected solutions.
Table 1 summarizes our acceptance criteria.

In the numerical experiments presented in Section 4, we use ρthresh = 0.5 and cthresh = 0.25,
which we recommend to be the default settngs in the code. Note that a larger ρthresh (aggressive
setting) allows the algorithm to make progress more slowly and take more steps to converge, which
may be useful for extremely difficult problems.

5

WORKING NO_PROGRESS

CONVERGED

dx_x <= ε

 dxrat > rho_thresh

dxrat <= rho_thresh

dxrat <= rho _thresh

(a) x-state (or r-state) transition

WORKING NO_PROGRESS

CONVERGED

UNSTABLE

dxc <= ε

dxc <= c_thresh

dxcrat <= rho_thresh

dxcrat <= rho_thresh dxcrat > rho_thresh

(b) xc-state (or rc-state) transition

Figure 1: State transition diagrams. ρthresh is the threshold on the ratio of successive corrections,
above which the convergence is considered too slow. (a) normwise, and (b) componentwise.

Remark 1. In contrast to linear systems, here, we separate the augmented solution into two
parts, x and r. If both converge, the algorithm should behave the same as for linear systems [8].
On the other hand, we may have half of the solution (say x) converge while the other half (r) stops
making progress. Or it may be the case that half is ill conditioned while the other half is not. We
will provide condition analysis of this “two-parts” approach in Section 3, and show empirically in
Section 4 that the augmented systems for LLS are harder than the usual linear systems because r
resides in the data space while x resides in the solution space, and they may be of different scales.

2.5 Scaling

In the case of linear systems, we typically perform row and/or column equilibrations to avoid
over/underflows and to reduce the condition number of scaled A. We now discuss scaling for the
LLS problems.

The driver routine xGELS_X first uses a simple scaling before solving the LLS problem. It
independently scales A by α and b by β up or down to make sure their norms are in the range
[SMLNUM, 1/SMLNUM], where SMLNUM ≈ UNDERFLOW/ε. The LLS problem we solve becomes

min
y
‖β · b− α ·Ay‖2 = min

y
‖β(b−A(α/β · y)‖2 = min

y
‖b−A(α/β · y)‖2 ≡ min

x
‖b−Ax‖2

In addition, xLARFG, which computes a single Householder reflection, does very careful scaling if
necessary, and depends on xNRM2 to not over/underflow.

The analysis of the linear system iterative refinement suggests that the convergence rate of the

refinement procedure depends on the condition number of the augmented matrix B =
(
Im A
AT 0

)
.

Björck suggested to use a single scalar α to scale the LLS problem as in b−Ax⇒ (b−Ax)/α [3].
This does not change the computed LLS solution, but now the augmented system involves the

matrix Bα =
(
αIm A
AT 0

)
. It was shown by Björck that the eigenvalues of Bα are:

λ(Bα) =
{

α
2 ± (α

2

4 + σ2
i)

1/2

α

6

where σi, i = 1, . . . , n are the singular values of A. In particular, if we choose α = σmin/
√

2, the

condition number κ2(Bα) takes the minimum value, κ2(Bα) = 1
2 +

√
1
4 + 2 κ2

A ≤ 2κ2(A), which
should lead to fastest convergence of the refinement for the augmented system. However, when
carefully working through the iteration in Algorithm 1 and the solve procedure (8), we see that
only the quantities related to r (i.e., t(i), dr(i), and r(i)) are scaled by 1/α, the other quantities
remain the same. Thus, as long as α is chosen to be power of the radix, the computed solution
and the rounding errors are not changed, Although Bα has a lower condition number, it does not
matter for our algorithm. We have confirmed this from numerical experiments. From the analysis
in Section 3 we will see that κ(Bα) does not play any role in the conditioning of the LLS problem.

Now, we discuss general equilibrations. We cannot row equilibrate A in our framework since this
would change its range and the norm we are minimizing. We can potentially column equilibrate A
by a general diagonal matrix D, which means scaling x by D−1. As long as we pick the entries in D
to be powers of the radix, we would not introduce any rounding errors (modulo over/underflows).
The normwise convergence criteria for x would be affected, because ‖dx‖, ‖x‖, and ‖dx(i+1)/‖dx(i)‖
will be different for unscaled or scaled x. With O(n) work, we can compute these quantities
corresponding to the unscaled x, and use them in the stopping criteria, just as what we did in
linear systems [8]. It remains our future work to see how this type of scaling affects convergence
rate.

3 Normwise and Componentwise Condition Numbers

The refinement algorithm can return various error bounds for the solutions x and r. In order to
determine when our error bounds are reliable, we need condition numbers for both x and r.

Applying the standard componentwise perturbation analysis to (2), we assume that the com-
puted solutions r̃ = r + δr and x̃ = x+ δx satisfy the following equations(

Im A+ δA
(A+ δA)T 0

)(
r̃
x̃

)
=
(
b+ δb

0

)
(9)

where |δA| ≤ ε|A|, and |δb| ≤ ε|b|. This is equivalent to the perturbed normal equation

(A+ δA)T (A+ δA)x̃ = (A+ δA)T (b+ δb)

Since ATAx = AT b, subtracting it from the above equation and noting that r̃ = b+δb− (A+δA)x̃,
we get

δx = A+(δb− δA · x̃) + (ATA)−1δAT · r̃ (10)

where A+ = (ATA)−1AT . Using the inequalities |δA| ≤ ε|A| and |δb| ≤ ε|b|, we obtain the following
bound on each component of δx

|δx| ≤ ε [|A+| (|b|+ |A| · |x̃|) + |(ATA)−1| · |AT | · |r̃|]
Taking norms, we get

‖δx‖∞
‖x̃‖∞ ≤ ε‖|A

+|(|b|+ |A| · |x̃|)‖∞ +
∥∥|(ATA)−1| · |AT | · |r̃|∥∥∞

‖x̃‖∞

7

Therefore, the following can be used as a normwise condition number for x

κxnorm
def=
‖|A+|(|b|+ |A| · |x̃|)‖∞ +

∥∥|(ATA)−1| · |AT | · |r̃|∥∥∞
‖x̃‖∞ (11)

Note that this derivation is valid assuming that A + δA has full rank, i.e., κ2(A) ≡ ‖A‖2‖A+‖2 is
not too large. In Section 4.2, we will confirm this assumption in practice.

In the case of linear systems, the basic solution method (GEPP) and the iterative refinement
algorithm are column scaling invariant. Therefore, we may choose the column scale factors such
that each component of the scaled solution is of magnitude about one, thus, the usual normwise
error bound measures the componentwise error as well.

We would like to apply the same technique to the augmented linear system (2). Letting Dr ≈
diag(r), and Dx ≈ diag(x), our refinement iterations can be thought of as solving the following
scaled system (

Im A
AT 0

)(
Dr

Dx

)(
zr
zx

)
=
(
b
0

)
(12)

where zr = D−1
r r ≈ 1, and zx = D−1

x x ≈ 1. The same solution method for the augmented system
can be used, but the convergence of zr and zx are monitored simultaneously as with r and x.

Applying the analogous perturbation analysis to (12), we assume that the computed solutions
z̃r = zr + δzr and z̃x = zx + δzx satisfy the following equations(

Im A+ δA
(A+ δA)T 0

)(
Dr

Dx

)(
z̃r
z̃x

)
=
(
b+ δb

0

)
(13)

By the same algebraic manipulation, we obtain the expression for δzx which is simply the
expression for δx (10) with a pre-factor D−1

x . That is,

δzx = D−1
x

[
A+(δb− δAx̃) + (ATA)−1δAT r̃

]
Taking norms, we get

‖δzx‖∞ ≤ ε
(∥∥|D−1

x ||A+|(|b|+ |A| · |x̃|)∥∥∞ +
∥∥|D−1

x | · |(ATA)−1| · |AT | · |r̃|∥∥∞) (14)

Since zx ≈ 1, ‖δzx‖∞ ≈ maxi
|δzx|i
|zx|i = maxi

|D−1
x δx|i
|D−1
x x|i

= maxi
|δx|i
|x|i . Therefore, (14) measures the

componentwise error of x, and the following can be used as the componentwise condition number

κxcomp
def=
∥∥|D−1

x | · |A+|(|b|+ |A| · |x̃|)∥∥∞ +
∥∥|D−1

x | · |(ATA)−1| · |AT | · |r̃|∥∥∞ (15)

We can use LAPACK’s condition estimator (SLACON, based on Hager-Higham’s algorithm) to
estimate each norm in (15). For example, let d = |b|+ |A||x̃|, D = diag(d) > 0, and e be the vector
of all ones, then,∥∥|D−1

x | · |A+|(|b|+ |A| · |x̃|)∥∥∞ =
∥∥|D−1

x | · |A+| d∥∥∞ =
∥∥|D−1

x | · |A+|De∥∥∞ =
∥∥|D−1

x | · |A+|D∥∥∞
=

∥∥|D−1
x A+D|∥∥∞ =

∥∥D−1
x A+D

∥∥
∞

The condition estimator requires multiplying D−1
x A+D and (D−1

x A+D)T with some vectors,
which involves triangular solves using R if we have A = QR at hand.

Similarly, let d = |AT | · |r̃|, D = diag(d) > 0, then,∥∥|D−1
x | · |(ATA)−1| · |AT | · |r̃|∥∥∞ =

∥∥|D−1
x | · |(ATA)−1|D∥∥∞ =

∥∥D−1
x (ATA)−1D

∥∥
∞

which can be estimated analogously.

8

We now derive the condition numbers for r. Consider the first set of equations in (9)

r + δr = b+ δb− (A+ δA)x̃

Substracting r = b−Ax from the above equation, we have:

δr = δb− δAx̃−Aδx

Substituting (10) for δx, we obtain:

δr = δb− δAx̃− (AA+(δb− δAx̃) +A(ATA)−1δAT r̃
)

= (Im −AA+)(δb− δAx̃)− (A+)T δAT r̃ (16)

Then, the bounds for each component of δr and δzr are given by

|δr| ≤ ε [|Im −AA+| (|b|+ |A| · |x̃|) + |(A+)T | · |AT | · |r̃|]
|δzr| ≤ ε|D−1

r |
[|Im −AA+|(|b|+ |A| · |x̃|) + |(A+)T | · |AT | · |r̃|]

Thus, the normwise condition number for r can be defined as

κrnorm
def=
‖ |Im −AA+| (|b|+ |A| · |x̃|) ‖∞ +

∥∥|(A+)T | · |AT | · |r̃|∥∥∞
‖b‖∞ (17)

The componentwise condition number for r can be defined as

κrcomp =
∥∥|D−1

r | · |Im −AA+|(|b|+ |A| · |x̃|)∥∥∞ +
∥∥|D−1

r | · |(A+)T | · |AT | · |r̃|∥∥∞ (18)

Observe that, given A = (Q1, Q2)
(
R
0

)
= Q1R, we have Im − AA+ = Im − Q1Q

T
1 . Since

‖Im −Q1Q
T
1 ‖2 = min{1,m− n}, we expect the effect of multiplication by |Im −AAT | to be small,

and so we can use the following approximate but cheaper-to-compute formula as the normwise
condition number for r:

κrnorm cheap
def=
‖ |b|+ |A| · |x̃| ‖∞ +

∥∥|(A+)T | · |AT | · |r̃|∥∥∞
‖b‖∞ (19)

By the same token, the following cheap formula could be considered as the componentwise
condition number for r:

κrcomp cheap =
∥∥|D−1

r | · (|b|+ |A| · |x̃|)
∥∥
∞ +

∥∥|D−1
r | · |(A+)T | · |AT | · |r̃|∥∥∞ (20)

Again, Hager-Higham’s algorithm can be used to estimate the respective norms∥∥|(A+)T | · |AT | · |r̃|∥∥∞ and
∥∥|D−1

r | · |(A+)T | · |AT | · |r̃|∥∥∞.
Fig. 3 compares the condition numbers estimated from formulae (17) - (20). There are altogether

one million randomly generated test matrices of size 100× 50 (see Section 4.1 for tests generation).
Fig. 2(a) shows that in normwise measure, the two estimates given by (17) and (19) are very close—
agree to within a factor four, with the cheaper ones yielding slightly smaller values. Therefore, it
is safe for our code to use (19). On the other hand, in componentwise measure (see Fig. 2(b)), the

9

log10 κr
norm cheap

lo
g 1

0
κ

r n
o
rm

Regular vs. cheap condition estimates: R normwise

0.0% 0.4%

0.2%

99.2%

0.2%

0 2 4 6 8 10 12 14
100

101

102

103

104

105

0

2

4

6

8

10

12

14

(a) normwise

log10 κr
comp cheap

lo
g 1

0
κ

r c
o
m

p

Regular vs. cheap condition estimates: R componentwise

4.2% 48.3%

0.0%

47.5%

0 5 10 15
100

101

102

103

104

0

5

10

15

(b) componentwise

Figure 2: Comparison between regular and cheap condition estimations for R.

Condition number Relative error Error estimate

x norm. κxnorm (11) Exnorm = ‖x̃−x‖∞
‖x̃‖∞ Bxnorm = max

{
‖dx(i+1)‖∞/‖xi‖∞

1−ρx
max

, γεw

}
comp. κxcomp (15) Excomp = maxk

∣∣∣ x̃(k)−x(k)x̃(k)

∣∣∣ Bxcomp = max
{
‖Dxdx

i‖∞
1−ρ̂x

max
, γεw

}
r norm. κrnorm (19) Ernorm = ‖r̃−r‖∞

‖b‖∞ Brnorm = max
{
‖dr(i+1)‖∞/‖bi‖∞

1−ρr
max

, γεw

}
comp. κrcomp (18) Ercomp = maxk

∣∣∣ r̃(k)−r(k)r̃(k)

∣∣∣ Brcomp = max
{
‖Drdr

i‖∞
1−ρ̂r

max
, γεw

}
Table 2: Summary of condition numbers and error estimates, where Dx = diag(x) and Dr =
diag(r). The error estimates are derived from the analysis of the geometric-decreasing sequence of
errors from iterations, see [8].

cheap estimation given by (20) can be much smaller than the one given by (18)—sometimes over
400x smaller. This is because if Dr has highly varying entries, leaving out the |Im − AAT | factor
could make the estimation arbitrarily small. In this case, we shall use the more expensive formula
(18).

Table 2 summarizes the estimated condition numbers and error bounds to be returned from the
new LAPACK routine. Here,

• γ is a constant factor used for setting a threshold to differentiate the acceptably conditioned
problems from the ill conditioned ones. Based on our empirical results from the linear system
refinement, a good value of γ is max{10,

√
m+ n} [8].

• εw is the machine epsilon in working precision.

• ρmax is the maximum ratio of successive corrections, which is a conservative estimate of the
rate of convergence. For example, ρxmax

def= maxj≤i
‖dx(j+1)‖∞
‖dx(j)‖∞

. Similarly, ρ̂max is defined for
the componentwise case.

The code also returns a componentwise backward error BERR(r̃, x̃) = max(ω1, ω2) [5, pp. 36],

10

where
ω1 = max

1≤i≤m

|r̃ +Ax̃− b|i
(|r̃|+ |A||x̃|+ |b|)i

ω2 = max
1≤i≤n

|AT r̃|i
(|A|T |r̃|)i

4 Numerical Experiments

We now present numerical results of our iterative refinement algorithm. All the test runs were
carried on the CITRIS Itanium-2 Cluster at UC Berkeley.1 Each node has dual 1.3 GHz Itanium
2 (Madison) processors. The operating system is Linux 2.6.18, and the compilers and flags are:
ifort -no-ftz -fno-alias -funroll-loops -O3 for Fortran code, and icc -O3 for C code.

We use single precision εw = 2−24 ≈ 6 × 10−8 as working precision and double precision
εd = 2−53 ≈ 10−16 in the refinement. Running in single precision allows us to test the input
space more thoroughly. Also, we can rely on the well-tested double precision codes to produce
trustworthy true solutions. The iteration control parameters ρthresh and cthresh are set to 0.5 and
0.25, respectively. Recall that γ = max{10,

√
m+ n}. We will analyze in detail the results of one

million least squares problems of dimension 100× 50.
Recall that we would like to achieve the following two goals from the refinement procedure:

Goal 1 For acceptably conditioned problems, we obtain small errors.

Goal 2 A small error bound returned from the code is trustworthy.

We will demonstrate that we meet these goals with the following data:

• norm- and componentwise relative errors in x (Section 4.2.1), where the errors are ≤ γ · εw
whenever the specific condition number ≤ 1

10 γ εw
;

• error estimates for x (Section 4.2.2), where the error estimates are within a factor of 10 of
the true error whenever the specific condition number ≤ 1

10 γ εw
;

• norm- and componentwise relative errors in r (Section 4.3.1), similar to x;

• error estimates for r (Section 4.3.2), similar to x; and

• iteration counts (Section 4.4), where the median number of iterations for acceptably condi-
tioned systems is two.

4.1 Test problem generation

We need to generate many test cases with a wide range of condition numbers, and the right-hand
sides b having angles ranging from close to zero to close to π/2 with respect to the column span of
A. We now describe our procedure for generating the test problems.

• Generate matrix A.
1http://www.millennium.berkeley.edu/citris/

11

1. Randomly pick a condition number κ with log2 κ distributed uniformly in [0, 24]. This
will be the (2-norm) condition number of the matrix before any scaling is applied. The
range chosen will generate both easy and hard problems (since εw = 2−24).

2. Pick a set of singular values σi’s from one of the following choices:

(a) One large singular value: σ1 = 1, σ2 = · · · = σn = κ−1.
(b) One small singular value: σ1 = σ2 = · · · = σn−1 = 1, σn = κ−1.

(c) Geometrical distribution: σi = κ−
i−1
n−1 for i = 1, 2, . . . , n.

(d) Arithmetic distribution: σi = 1− i−1
n−1(1− κ−1) for i = 1, 2, . . . , n.

3. Pick k randomly from {3, n/2, n}. Move the largest and the smallest singular values
(picked in step 1) into the first k values, and let Σ be the resulting diagonal matrix. let

A = UΣ
(
V1

V2

)
(21)

where U , V1, and V2 are random orthogonal matrix with dimensions n, k, and n −
k, respectively. If κ is large, this makes the leading k columns of A nearly linearly
dependent. U , V1 and V2 are applied via sequences of random reflections of dimensions
2 through n, k or n− k, respectively.

• Generate vector b.

1. Compute b1 = Ax (with random x) using double-double precision but rounded to single
precision in the end (using the XBLAS routine BLAS_sgemm_x). Normalize b1 such that
‖b1‖2 = 1.

2. Compute A = QR. Pick vector d of m random real numbers uniformly distributed in
(−1, 1). Compute b2 = d − QQTd, and normalize b2 such that ‖b2‖2 = 1. Now that b2
is orthogonal to the columns of A.

3. Pick a random θ ∈ [0, π/2] as follows. First, set θ = π · 2u where u is uniformly
distributed in [−26,−1]. Then, with probability 0.5, flip θ = π/2 − θ. Compute final
b = cos θ · b1 + sin θ · b2.

Note that steps 2 and 3 are carried out in double precision. The final b is then rounded to
single precision.

• Compute xtrue and rtrue by solving the augmented linear equations (2) using double precision
linear system solver with double-double precision iteration refinement (the new LAPACK
routine DGESVXX).

Using the above procedure, we have systematically generated one million test problems of
dimension 100 × 50. Among them, the condition numbers of A range between 1.0 and 4.9 × 108,
and the condition numbers of the scaled augmented matrix Bα (see Section 2.5) range between 57.8
and 8.1× 109. Fig. 3 shows the 2D histograms of the properties of the test problems: the angle θ
between b and the column span of A, and the conditioning of A. In the 2D histogram, each shaded
square at coordinate (x, y) indicates the population of the problems which have θ ∈ [10x, 10x+1/4]
and the condition number κ∞(A) ∈ [10y, 10y+1/4]. Fig. 3(a) plots against θ, while Fig. 3(b) plots

12

log10 θ

lo
g 1

0
κ
(A

)
Matrix statistics: 1000000

-6 -4 -2 0
100

101

102

103

104

1

2

3

4

5

6

7

8

(a) θ

log10(
π
2 − θ)

lo
g 1

0
κ
(A

)

Matrix statistics: 1000000

-6 -4 -2 0
100

101

102

103

104

1

2

3

4

5

6

7

8

(b) π
2
− θ

Figure 3: Statistics of the one million test problems.

against π/2−θ. These plots show that we indeed have a good sampling of easy and hard problems,
having many cases with θ close to 0 and many cases with θ close to π/2. In fact, we sample the
region around tiny and near-π/2 angles much more than the “easier” middle region. They also
show that our method generated angles arbitrarily close to zero, but not arbitrarily close to π/2.

These types of 2D histogram plots will be used in the remainder of the paper to illustrate all
the test results.

4.2 Results for x

Of the one million test problems, 577,412 are acceptably conditioned in normwise measure (i.e.,
κxnorm < 1

10 γ εw
), and 355,330 are acceptably conditioned in componentwise measure (i.e., κxcomp <

1
10 γ εw

).

4.2.1 True error

First, in Fig. 4, we plot the normwise true error of x obtained from single precision QR factor-
ization without iterative refinement (The LAPACK routine SGELS). As is shown, the error grows
proportionally with the condition number of x, κxnorm. The horizontal solid line is at the value
Exnorm = γεw ≈ 7.3 · 10−7. A matrix below this line indicates that the true error is of or-
der εw, which is the most desirable convergence case. We also plot this solid line in the other
analogous figures for all the errors (e.g., Excomp, E

r
norm, and Ercomp) and the error bounds (e.g.,

Bx
norm, B

x
comp, B

r
norm, and Br

comp). The vertical solid line (also in the other analogous figures) is at
the value κxnorm = 1

10 γ εw
≈ 1.4 · 105, which separates the acceptably conditioned problems from

the ill conditioned ones. In addition, we often plot a dashed line at the value of εw as a reference
line. In each quadrant defined by the horizontal and vertical cutoff lines, we label the number of
test problems falling in that quadrant.

Fig. 5 shows the results of normwise true error of x after our refinement procedure terminates,
whether the code reports convergence or not. Regarding κxnorm, there are 577,412 acceptably
conditioned problems which appear in the left two quadrants. Among them, 577,377 converged,

13

log10 κx
norm

lo
g 1

0
E

x n
o
rm

Before refnement

433091 422588

144321

0 5 10 15
100

101

102

103

104

-8

-6

-4

-2

0

Figure 4: Before refinement: true error of x vs.
κxnorm.

log10 κx
norm

lo
g 1

0
E

x n
o
rm

Normwise error vs. condition number κx
norm.

35 110538

577377 312050

0 5 10 15
100

101

102

103

104

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Figure 5: After Refinement: true error of x vs.
κxnorm (all cases).

log10 κx
norm

lo
g 1

0
κ
∞

(A
)

Condition estimates: A vs. x

1.1% 2.6%

11.1%

15.7%

41.0% 28.5%

0 5 10 15
100

101

102

103

104

0

2

4

6

8

10

12

14

Figure 6: κ∞(A) vs. κxnorm.

log10 κx
norm

lo
g 1

0
E

x n
o
rm

Normwise error vs. condition number κx
norm.

74665

577376 302322

0 5 10 15
100

101

102

103

104

-8

-6

-4

-2

0

Figure 7: Normwise error of x vs. κxnorm (con-
verged cases).

and 35 have errors larger than our error threshold. For those 35 problems, the condition number
of A (κ∞(A) def= ‖A‖∞‖A+‖∞) are all larger than or close to the condition threshold, thus they are
close to rank deficient. Fig. 6 compares the condition number of A vs. the condition number of x.
As is shown, many problems have κ∞(A) larger than κxnorm.

In the situation when A is nearly rank deficient, our computed κxnorm may not be trustworthy
for two reasons: 1) our perturbation analysis for Eq. (11) assumes that A is not too ill conditioned,
and 2) κxnorm depends on the computed x̃ and r̃ which are not accurate. Therefore, these problems
should also be characterized as ill conditioned. In fact, with closer examination of those 35 cases,
we found that all of them did not converge. Our code only accepts the results when the iteration
converges w.r.t. the corresponding state variable. When it does not converge, we simply set the
error estimate to one. In Fig. 7, we make another histogram plot which filters out the unconverged
cases. That is, we show only the problems with x-state = converged (see Section 2.4). Now, none
of the problems appears in the upper left quadrant.

Fig. 8 shows the results of componentwise true error of x versus condition number. There are

14

355,330 acceptably conditioned problems. Without refinement (Fig. 8(a)), the error grows propor-
tionally with the condition number. After refinement (Fig. 8(b)), all the acceptably conditioned
problems converged. Among the remaining very ill conditioned ones, 449,483 of them still con-
verged. Overall, only 19.5% (195,187 out of one million) of the problems did not converge. Fig. 9
plots only the cases that have converged.

log10 κx
comp

lo
g 1

0
E

x c
o
m

p

Before refinement

353065 644670

2265

0 5 10 15
100

101

102

103

104

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(a) before refinement

log10 κx
comp

lo
g 1

0
E

x c
o
m

p

Componentwise error vs. condition number κx
comp.

195187

355330 449483

0 5 10 15
100

101

102

103

104

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(b) after refinement

Figure 8: Componentwise error of x vs. condition number (all cases).

From Figs. 7 and 9 we draw the most important conclusion that for all the acceptably con-
ditioned and converged problems, our algorithm delivers tiny errors for x, both normwise and
componentwise. That is, Goal 1 is clearly achieved for the solution x. Moreover, the algorithm
converged with small errors for a large fraction of the ill conditioned problems, that is, 73.8% of the
422,588 problems with κxnorm ≥ 1

10 γ εw
, and 69.7% of the 644,670 problems with κxcomp ≥ 1

10 γ εw
.

4.2.2 Reliability of error bounds

From the user’s point of view, a small error can be recognized only from a small error bound
estimated from the algorithm. Figs. 10 and 11 show the relation between the true errors and the
error bounds (see Table 2). In these plots, the diagonal line marks where the true error equals the
error bound. A matrix above the diagonal corresponds to an overestimate, and a matrix below the
diagonal corresponds to an underestimate.

For the acceptably conditioned (measured in κxnorm and κxcomp, respectively) and converged
problems (Figs. 10(a) and 10(b)), the algorithm converged to a solution with error of at most
1.1 ·10−7, and returned an error bound γεw ≈ 7.3 ·10−7, which never underestimates the true error.

For the ill conditioned problems (Figs. 11(a) and 11(b)), a large fraction of the problems still
converged and the error bounds reflect small errors. Note that in cases where both Bx

norm and Exnorm
converged to below γεw (we call it strong-strong convergence), or completely fails to converge, the
code would return a small error bound or flag the failure with an error bound of 1.0. Thus, an
interesting scenario is when the algorithm claims convergence to a solution but the error estimation
is far from the true solution. We analyze this situation in Fig. 12, where we plot the 2D histogram
of the ratio Bx

norm/E
x
norm (resp. Bx

comp/E
x
comp) against κxnorm (resp. κxcomp). In the normwise case

(Fig. 12(a)), there are 74,812 matrices falling in this category, which accounts for 17.7% of the
total very ill conditioned ones. The error estimations become worse as the condition numbers of

15

log10 κx
comp

lo
g 1

0
E

x c
o
m

p

Componentwise error vs. condition number κx
comp.

94824

355330 419295

0 5 10 15
100

101

102

103

104

-8

-6

-4

-2

0

Figure 9: Componentwise error of x vs. κxcomp (converged cases).

log10E
x
norm

lo
g 1

0
B

x n
o
rm

Normwise Error vs. Bound

577376

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(a) normwise

log10 Ex
comp

lo
g 1

0
B

x c
o
m

p

Componentwise Error vs. Bound

355330

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(b) componentwise

Figure 10: Error estimate of x versus true error (acceptably conditioned and converged cases).

log10E
x
norm

lo
g 1

0
B

x n
o
rm

Normwise Error vs. Bound

307 35290

311744 75283

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(a) normwise

log10 Ex
comp

lo
g 1

0
B

x c
o
m

p

Componentwise Error vs. Bound

2166 74399

447317 120788

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(b) componentwise

Figure 11: Error estimate of x versus true error (ill conditioned or non-converged cases).

16

log10 κx
norm

lo
g 1

0
(r

at
io

)

ratio of Bx
norm/ Ex

normvs. κx
norm

(strong-strong or non-converged cases omitted)

33684

24436

16692

0 5 10 15
100

101

102

103

-5

0

5

(a) normwise

log10 κx
comp

lo
g 1

0
(r

at
io

)

ratio of Bx
comp/ Ex

compvs. κx
comp

(strong-strong or non-converged cases omitted)

37120

29670

28207

0 5 10 15
100

101

102

-5

0

5

(b) componentwise

Figure 12: Overestimation and underestimation ratio of bound over error for x (strong-strong
converged or non-converged cases are omitted).

the problems get larger. This is because the code converged to the wrong solutions, and the error
bounds are not trustworthy. Similar behavior is seen in the componentwise case (Fig. 12(b)). Here,
94,997 matrices fall in this category, accounting for 14.7% of the total very ill conditioned ones.

These data show that Goal 2 is achieved for acceptably conditioned problems, because the
returned error bounds are close to and never underestimate the true errors. For very ill conditioned
problems, the error bounds may underestimate the true errors, depending on how difficult the
problems are. In any event, because the code detects ill conditioning, the returned error bound can
be set to one to warn the user.

4.3 Results for r

Of the one million test problems, 962,834 are acceptably conditioned in normwise measure (i.e.,
κrnorm < 1

10 γ εw
), and 412,683 are acceptably conditioned in componentwise measure (i.e., κrcomp <

1
10 γ εw

).

4.3.1 True error

Figs. 13 and 14 show the relation between the normwise error and the condition number κrnorm
before and after refinement, respectively. There are 962,834 acceptably conditioned problems which
appear in the left two quadrants. Among them, 958,102 converged, and 4,732 have errors larger
than our error threshold. The condition numbers of A for those 4,732 problems are all larger
than the condition threshold, thus, similar to the situation with x, we should classify them as ill
conditioned.

In Fig. 15, we make a histogram plot which filters out the unconverged cases. That is, we show
only the problems with r-state = converged (see Section 2.4). Now, none of the cases appears in
the upper left quadrant, and the algorithm delivers small errors for all converged problems.

Fig. 16 shows the error vs. the angle between b and Ax for those acceptably conditioned
problems (κrnorm < 1

10 γ εw
) but unconverged (r-state 6= converged, see Section 2.4). These include

17

log10 κr
norm

lo
g 1

0
E

r n
o
rm

Before refnement

945653 37166

17181

0 2 4 6 8 10 12 14
100

101

102

103

104

-8

-6

-4

-2

0

Figure 13: Before refinement: normwise error of
r vs. κrnorm.

log10 κr
norm

lo
g 1

0
E

r n
o
rm

Normwise error vs. condition number κr
norm.

4732 2920

958102 34246

0 2 4 6 8 10 12 14
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Figure 14: After refinement: normwise error of r
vs. κrnorm (all cases).

log10 κr
norm

lo
g 1

0
E

r n
o
rm

Normwise error vs. condition number κr
norm.

955678 34195

0 2 4 6 8 10 12 14
100

101

102

103

104

105

-8

-6

-4

-2

0

Figure 15: Normwise error of r vs. κrnorm (con-
verged cases).

PSfrag replacemen

log10 θ

lo
g 1

0
E

r n
o
rm

Acceptably conditioned but not converged

-8 -6 -4 -2 0
100

101

-8

-6

-4

-2

0

Figure 16: Normwise error of r vs. θ (acceptably
conditioned but unconverged).

all the problems appearing in the upper left quadrant of Fig. 14. This shows that the error grows
proportionally with the angle θ, although θ is still small.

Fig. 17 compares the condition number of A vs. the condition number of r. It can be seen that
many problems have κ∞(A) larger than κrnorm. Fig. 18 shows the relation of the condition ratio of
r over A with the size of the angle θ.

In Fig. 19, we plot the errors with respect to the maximum of the two condition numbers. In
this measure, all the acceptably conditioned problems converged. Among the remaining very ill
conditioned ones, 144,257 of them still converged with small errors. Overall, only 0.7% (7,652 out
of one million) of the problems did not converge.

Fig. 20 plots the 2D histogram of the true error of r vs. κrnorm, in which ‖r‖∞ instead of ‖b‖∞
is used in the denominator when computing the relative error and κrnorm (see Eq. (17)). In this
case, all but one of the acceptably conditioned problems converged. On the other hand, many
more problems now become ill conditioned (c.f. Fig. 14). In particular, most (nearly) consistent
systems (with small r) would be considered as ill conditioned in this measure. We believe this is

18

log10 κr
norm

lo
g 1

0
κ
∞

(A
)

Condition estimates: A vs. r

11.5% 2.8%

0.6%

54.2%

30.6% 0.4%

0 2 4 6 8 10 12 14
100

101

102

103

104

0

2

4

6

8

10

12

14

Figure 17: κ∞(A) vs. κrnorm (all cases).

log10 θ

lo
g 1

0
(r

at
io

)

Condition ratio vs. angle

-8 -6 -4 -2 0
100

101

102

103

104

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

Figure 18: Ratio of κrnorm
κ∞(A) vs. θ (all cases).

log10 max{κr
norm, κ∞(A)}

lo
g 1

0
E

r n
o
rm

Normwise error vs. condition number

7652

848091 144257

0 2 4 6 8 10 12 14
100

101

102

103

104

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Figure 19: Normwise error of r vs.
max{κrnorm, κ∞(A)} (all cases).

log10 κr
norm

lo
g 1

0
E

r n
o
rm

Normwise error vs. condition number κr
norm.

1 17015

700523 282461

0 2 4 6 8 10 12 14
100

101

102

103

104

-8

-6

-4

-2

0

Figure 20: Normwise error of r vs. condition
number (all cases). κrnorm is measured w.r.t
‖r‖∞ instead of ‖b‖∞ in formula (17).

19

log10 κr
comp

lo
g 1

0
E

r c
o
m

p
Before refinement

412683 587317

0 5 10 15
100

101

102

103

104

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(a) before refinement

log10 κr
comp

lo
g 1

0
E

r c
o
m

p

Componentwise error vs. condition number κr
comp.

57411

412683 529906

0 5 10 15
100

101

102

103

104

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(b) after refinement

Figure 21: Componentwise error of r vs. κrcomp (all cases).

log10 κr
comp

lo
g 1

0
E

r c
o
m

p

Componentwise error vs. condition number κr
comp.

475

412683 488264

0 5 10 15
100

101

102

103

104

-8

-6

-4

-2

0

Figure 22: Componentwise error of r vs. κrcomp (converged cases).

too sensitive a measure of ill conditioning for many users of least squares problems, who only want
to know that Ax is near b.

In componentwise measure, the algorithm delivers tiny errors for all the acceptably conditioned
problems after refinement (Fig. 21(b)). That is, Goal 1 is met for r in componentwise measure.
Moreover, the algorithm converged with small errors for a large fraction of the very ill conditioned
problems. Overall, only 5.7% (57,411 out of one million) did not converge.

In Fig. 22, we make a histogram plot which filters out the unconverged cases. That is, we show
only the problems with rc-state = converged (see Section 2.4).

4.3.2 Reliability of error bounds

Figs. 23 and 24 show the relation between the true errors and the error bounds (see Table 2). For the
acceptably conditioned (measured in κrnorm and κrcomp) and converged problems, both normwise and
componentwise (Fig. 23), the algorithm converged to a solution with true error of at most 1.1 ·10−7,

20

log10E
r
norm

lo
g 1

0
B

r n
o
rm

Normwise Error vs. Bound

955678

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(a) normwise

log10 Er
comp

lo
g 1

0
B

r c
o
m

p

Componentwise Error vs. Bound

412683

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(b) componentwise

Figure 23: Error estimate of r versus true error (acceptably conditioned and converged cases).

log10E
r
norm

lo
g 1

0
B

r n
o
rm

Normwise Error vs. Bound

411 7568

36259 84

-8 -6 -4 -2 0
100

101

102

103

104

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(a) normwise

log10 Er
comp

lo
g 1

0
B

r c
o
m

p

Componentwise Error vs. Bound

10687 56356

519219 1055

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(b) componentwise

Figure 24: Error estimate of r versus true error (ill conditioned or non-converged cases).

21

PSfrag replacemen

log10 κr
comp

lo
g 1

0
(r

at
io

)

ratio of Br
comp/ Er

compvs. κr
comp

(strong-strong or non-converged cases omitted)

470

16

0 5 10 15
100

101

-5

0

5

Figure 25: Overestimation and underestimation ratio of bound over error for r (strong-strong
converged or non-converged cases are omitted).

and returned an error bound γεw ≈ 7.3 · 10−7, which never underestimates the true error. This
shows that Goal 2 is met for acceptably conditioned problems.

For the ill conditioned problems (Figs. 24(a) and 24(b)), a large fraction of the problems still
converged and the error bounds reflect small errors. Similar to x, we are more concerned with
the scenario when the algorithm claims convergence to a solution but the error estimate is far
from the true solution. In the normwise case, none of the problems falls in this category. In the
componentwise case, only 486 problems fall in this category. Fig. 25 plots the 2D histogram of the
ratio Br

comp/E
r
comp against κrcomp. The error bounds correctly estimates the errors (within a factor

of 10) for large fraction of the problems, and only for 16 of them, the error bounds underestimates
more than a factor of 10, yet no more than a factor of 100.

4.4 Iteration count

Fig. 26 shows the profile of the number of iterations plotted against the four condition numbers,
κxnorm, κxcomp, κ

r
norm, and κrcomp. Each sub-figure shows only the number of steps the algorithm

took for one specific quantity to be either converged or making no more progress. For example,
Fig. 26(a) shows the number of steps the convergence status variable x-state was working before it
converged or made no-progress, and the horizontal axis shows the corresponding condition number.
The four convergence status variables are defined for x and r, normwise and componentwise, see
Section 2.4. For acceptably conditioned problems w.r.t. the corresponding condition number, the
algorithm usually terminates very quickly. For ill conditioned problems, it may take many more
steps—sometimes up to 43. The median number of steps to terminate in our tests is three.

Fig. 27 is a summary plot showing the number of steps for the iteration to stop entirely after
all four measures are either converged or making no progress. The horizontal axis is the maximum
of all four condition numbers. Table 3 summarizes the median and max number of iteration steps
with individual metrics.

We also compared the iteration count between Björck and Golub’s algorithm (see Section 2.4)
and our algorithm using ρthresh = 0.125. With this ρthresh, the two algorithms measure progress

22

log10 κx
norm

lo
g 1

0
st

ep
s

median steps: 2

0 5 10 15
100

101

102

103

104

0

0.5

1

1.5

(a) steps to terminate x-state vs. κxnorm

log10 κx
comp

lo
g 1

0
st

ep
s

median steps: 3

0 5 10 15
100

101

102

103

104

0

0.5

1

1.5

(b) steps to terminate xc-state vs. κxcomp

log10 κr
norm

lo
g 1

0
st

ep
s

median steps: 2

0 2 4 6 8 10 12 14
100

101

102

103

104

105

0

0.5

1

1.5

(c) steps to terminate r-state vs. κrnorm

log10 κr
comp

lo
g 1

0
st

ep
s

median steps: 2

0 5 10 15
100

101

102

103

104

0

0.5

1

1.5

(d) steps to terminate rc-state vs. κrcomp

Figure 26: Iteration count w.r.t. individual metrics.

log10 max{κx
norm, κx

comp, κ
r
norm, κr

comp}

lo
g 1

0
st

ep
s

median steps: 3

0 2 4 6 8 10 12 14
100

101

102

103

104

0

0.5

1

1.5

Figure 27: Steps to terminate the entire iteration vs. the maximum of the four condition numbers.

23

Acceptably conditioned All systems
median max median max

x norm. 2 11 2 43
comp. 2 4 3 43

r norm. 2 28 2 31
comp. 2 3 2 37

Table 3: Summary of iteration counts.

similarly, but Björck and Golub’s algorithm considers convergence relative to the initial solution
and instead of the current iterate. Also, Björck and Golub’s algorithm only considers normwise
convergence of x and r, whereas our algorithm considers both normwise and componentwise con-
vergence. Our stronger termination criteria sometimes require more iterations, but the median
across our test set for both algorithms is three iterations. The occasional extra work buys reliable
componentwise results. Surprisingly, there are also cases where Björck and Golub’s algorithm re-
quires more iterations. Carrying x and r to extra precision allows our algorithm to terminate more
quickly in approximately 1% of our test cases.

5 Special Cases

A truly robust code should be able to handle the special cases such as when A is square or A is
block diagonal. We now discuss how we may adapt the code in these situations.

Given a square, nonsingular system, the algorithm designed for LLS may return unexpected
results depending on the rank of the matrix. If the matrix is of full rank, the true residual is a
constant zero regardless of the right-hand side. The condition number of a constant function is
zero, and the code should compute a zero residual and accept it. However, if the matrix is rank
deficient or within a rounding error of rank deficiency, then the least-squares problem is ill-posed
without additional constraints. The code should detect the low-rank or nearly low-rank matrices
and reject the solutions.

If we evaluate κrnorm with formula (17) for square A, the computed condition number is usually
small (O(ε)), but not exactly zero, because r̃ is the residual of the perturbed system and should
be exactly zero or small, and the evaluated Im − AA+ is usually O(ε) instead of 0. Therefore, it
does not accurately return the true condition numbers reflecting both cases (1) and (2). Similarly,
evaluating formula (18) for κrcomp, we would get zero-divided-by-zero error from zero diagonals of
Dr.

It appears that for square matrices, we could simply call our linear system solver xGESVXX [8],
which uses LU factorization. But then we cannot return Q and R for later use. A better strategy
is as follows. We will have a new routine, say xGEQRSVXX, which runs with the same algorithm
and stopping criteria as xGESVXX, but uses QR in place of LU as the basic solution method and
for computing the updates. As long as x converges successfully, we can return r and its condition
numbers identically zero. If xGEQRSVXX discovers the system is too ill conditioned, we should return
a large number as r’s condition numbers.

When matrix A is block diagonal and all the blocks are acceptably conditioned and either
square or overdetermined, our algorithm can obtain as good an answer as if we were solving an
individual LLS problem with each block. If some block is low rank, as long as the corresponding

24

block in the right-hand side is zero, our algorithm will return zero for that block of x, and return
good answers for the other blocks. In the more general rank-deficient cases, we recommend using
the other LAPACK routines which performs QR with column pivoting or SVD. The development
of the companion iterative refinement routines remains future work.

6 Related Work

In an earlier paper [19], Wampler compared twenty different computer programs to assess numerical
accuracy of five different algorithms. Wampler found that those programs using orthogonal House-
holder transformations, classical Gram-Schmidt orthonormalization or modified Gram-Schmidt or-
thogonalization were generally much more accurate than those using elimination algorithms, and
the most successful programs accumulated inner products in double precision and made use of iter-
ative refinement procedures. This justifies that we start from the algorithm by Björck & Golub [6].

Much of the analysis in Section 3 appeared previously in literature, see for example [4, 5, 10].
Our main contribution is to provide a unified framework for both normwise and componentwise
condition numbers and error bounds which are easy to understand and can be easily computed.
More recently, Cucker et al. have provided sharper bounds for condition numbers of the least
squares problems [7], however, those quantities cannot be easily estimated, and hence we do not
use them in this work. Arioli et al. [1] considered perturbations that are measured in different norms
(Frobenius or the spectral norm for A and the Euclidean norm for b), and derived the condition
number for x expressed in the weighted product norms. Although their condition numbers can be
cheaply estimated, their norms are different from the infinity-norm we are using. The refinement
algorithms for weighted and linearly contrained least squares also exist [9, 15].

Motivated by the speed difference between single and double precision floating point arithmetics
on many recent microprocessors (single precision typically can be 2x faster, and is 10x faster on
the IBM Cell Processor), Langou et al. have performed similar studies with iterative refinement
for linear systems, where the LU factorization is computed in single precision, and the iterative
refinement is performed in double precision [12]. Here, iterative refinement is used to accelerate
the solution of Ax = b, rather than getting a more accurate answer. The stopping criterion in [12]
is simply that the residual satisfies

‖Ax− b‖2 ≤
√
nε‖A‖F ‖x‖2 (22)

This guarantees that on convergence, their algorithm computes an x̂ with a small normwise back-
ward error (i.e., satisfying (A+δA)x̂ = b+δb with ‖δA‖2 = O(ε)‖A‖2 and ‖δb‖2 = O(ε)‖b‖2), which
is the same error bound obtained by Gaussian elimination with pivoting done in double precision
without refinement. They showed that on ten different architectures, this new mixed precision
routine is faster (up to 1.9x on the Cell) than the routine that computes LU in double precision
and does not perform refinement. This is because refinement does only O(n2) double precision
operations as opposed to the 2

3n
3 +O(n2) single precision operations of Gaussian elimination,

In Section 7 we will show what backward error could be used as a stopping criterion to mimic
this behavior for least squares problems.

25

7 Using Iterative Refinement To Solve Least Squares Problems
With Small Backward Error

It would be beneficial to have a scheme that does QR decomposition in single precision plus it-
erative refinement in double precision to guarantee the same backward error as provided by QR
decomposition in double precision with no refinement. We explain how to do this, since it is not
as straightforward as for solving Ax = b.

With Ax = b the exact backward error is well-known to be computable exactly and cheaply from
the residual r = Ax̂−b, as shown by the theorems of Rigal-Gaches [16, 10] and Oettli-Prager [14, 10]:

ωE,f (x̂) ≡ min{η : (A+ δA)x̂ = b+ δb, |δA| ≤ η · E, |δb| ≤ η · f}
= max

i

|Ax̂− b|i
E|x̂|+ f

. (23)

But this is not the case for least squares. Instead, Walden, Karlson and Sun showed that the exact
backward error is given by a formula requiring the smallest singular value of the m-by-(m + n)
matrix [A, c(I− r̂r̂T /‖r̂‖2)] where c is a constant [18, 10]. This is too expensive (even exploiting the
special structure of the matrix) to use as a stopping criterion for iterative refinement. Instead, we
consider the backward error of the (scaled) augmented system. Of course a general perturbation to
the augmented system will not preserve its special structure and so not guarantee a small backward
error in the original least squares problem. Fortunately, it is possible to both preserve this stucture
and compute the backward error inexpensively:

Theorem 1 Let ω = max(‖αr̂+Ax̂−b‖∞
‖A‖∞‖x̂‖1+‖b‖∞ ,

‖AT r̂‖∞
‖A‖∞‖r̂‖1). If ω � 1, then the computed solution x̂ is a

solution of the perturbed least squares problem[
αI A+ δA

(A+ δA)T 0

]
·
[ˆ̂r
x̂

]
=
[
b
0

]
(24)

with
‖δA‖∞ ≤ (

√
mn((m+ 1)2 + 1) · ω +O(ω2))‖A‖∞ , and

‖r̂ − ˆ̂r‖∞ ≤ ω

1− ω‖r̂‖∞ .

Proof: Let 1r×c (0r×c) denote the r-by-c matrix of all ones (all zeros, resp.). Apply Oettli-Prager
(23) to the scaled augmented system[

αI A
AT 0n×n

]
·
[
r̂
x̂

]
=
[

b
0n×1

]
+
[
e1
e2

]
with

E =
[

0m×m ‖A‖∞1m×n

‖A‖∞1n×m 0n×n

]
and f =

[‖b‖∞1m×1

0n×1

]
yielding

ω ≡ ωE,f ([r̂; x̂]) = max(
‖e1‖∞

‖A‖∞‖x̂‖1 + ‖b‖∞ ,
‖e2‖∞
‖A‖∞‖r̂‖1) .

26

In other words, there are δA1, δA2 and δb satisfying[
αI A+ δA1

(A+ δA2)T 0n×n

]
·
[
r̂
x̂

]
=
[
b+ δb
0n×1

]
(25)

and
|δA1|ij ≤ ω · ‖A‖∞ , |δA2|ij ≤ ω · ‖A‖∞ and |δb|i ≤ ω · ‖b‖∞ .

But we have not yet shown that ω = O(ε) is enough to guarantee a tiny backward error in the
least squares problem, because we must still show that it is possible to choose δA1 = δA2. We
do this in two steps. First we note that there is a matrix ∆ satisfying (I + ∆)b = b + δb and
‖∆‖∞ = ‖δb‖∞/‖b‖∞ ≤ ω, namely ∆ = ‖b‖−1

∞ · δb · etj where ‖b‖∞ = |bj | and ej is the j-th column
of the identity matrix. We apply this to (25) yielding[

b
0n×1

]
=

[
(I + ∆)−1 0m×n

0n×m I

]
·
[
b+ δb
0n×1

]
=

[
(I + ∆)−1 0m×n

0n×m I

]
·
[

αI A+ δA1

(A+ δA2)T 0n×n

]
·
[
r̂
x̂

]
=

[
αI (I + ∆)−1(A+ δA1)

(A+ δA2)T (I + ∆) 0

]
·
[

(I + ∆)−1r̂
x̂

]
=

[
αI A+ ˆδA1

(A+ ˆδA2)T 0

]
·
[ˆ̂r
x̂

]
where

‖ ˆδA1‖∞ = ‖(I + ∆)−1(A+ δA1)−A‖∞ ≤ ω(1 + 2ω)
1− ω ‖A‖∞

‖ ˆδA2‖∞ = ‖(I + ∆T)δA2 + ∆TA‖∞ ≤ ((m+ 1)ω +mω2)‖A‖∞
‖r̂ − ˆ̂r‖∞ = ‖(I + ∆)−1r̂ − r̂‖∞ ≤ ω

1− ω‖r̂‖∞

Now we apply a slight modification of a result of Kielbasinski and Schwetlick [11, 10] or of Stewart
[17] which lets us replace ˆδA1 and ˆδA2 by a single δA of slightly larger norm, namely

‖δA‖2F ≤ ‖ ˆδA1‖2F + ‖ ˆδA2‖2F
≤ m(‖ ˆδA1‖2∞ + ‖ ˆδA2‖2∞)

≤ m((
ω(1 + 2ω)

1− ω)2 + ((m+ 1)ω +m2ω2)2)‖A‖2∞
= [m(1 + (m+ 1)2)ω2 +O(ω3)]‖A‖2∞

satisfying (24). Now use ‖δA‖∞ ≤
√
n · ‖δA‖F to get the final bound. The small change to the

result of Kielbasinski and Schwetlick or of Stewart is to accomodate the αI instead of I in the
upper left corner. �

8 Conclusions

We have presented a new variant of the extra-precise iterative refinement algorithm for linear least
squares problems. The algorithm can be implemented portably and efficiently using the extended

27

precision BLAS standard, and is readily parallelizable. The overhead of refinement and condition
estimations is small when the problems are relatively large, for example, when they do not fit in
the processor’s cache.

Our extensive numerical tests showed that, using extra precision in residual computation and
solution vector update, the algorithm achieved condition-independent accuracy for both x and r,
both normwise and componentwise, as long as the problem is not more ill conditioned than 1/ε.
In contrast to linear systems, where conditioning of A alone usually indicates the difficulty of the
problems, for least squares problems ill conditioning may be due to several factors: ill conditioning
of A itself, a small angle between b and Ax (i.e., a nearly consistent system resulting in small r),
or an angle close to π/2 (i.e., x is small). When the algorithm does not converge, it correctly flags
these difficult situations. Measured by iteration count and the amount of computation per step,
this refinement procedure requires more work than for the linear systems.

In this report, we used rather conservative settings of the parameters ρthresh and cthresh to
control the iteration. If desired in very difficult cases, the user can change the default settings
to make the algorithm more aggressive, and let the code progress more slowly with more steps to
reach convergence.

Acknowledgement

We thank David Vu and Meghana Vishvanath of U.C. Berkeley. Their work on debugging the
iterative refinement routines for linear systems helped us debug the least squares code.

References

[1] Mario Arioli, Marc Baboulin, and Serge Gratton. A partial condition number for linear least
squares problems. SIAM Journal on Matrix Analysis and Applications, 29(2):413–433, 2007.

[2] David Bailey. A Fortran-90 double-double precision library. http://crd.lbl.gov
/∼dhbailey/mpdist.

[3] Åke Björck. Iterative refinement of linear least squares solutions I. BIT, 7:257–278, 1967.

[4] Åke Björck. Component-wise perturbation analysis and error bounds for linear least squares
solutions. BIT, 31:238–244, 1991.

[5] Åke Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.

[6] Åke Björck and Gene Golub. Iterative refinement of linear least squares solution by householder
transformation (Algol Programming). BIT, 7:322–337, 1967.

[7] Felipe Cucker, Huaian Diao, and Yimin Wei. On mixed and componentwise condition numbers
for Moore-Penrose inverse and linear least squares problems. Mathematics of Computation,
76(258):947–963, April 2007.

[8] J. Demmel, Y. Hida, W. Kahan, X.S. Li, S. Mukherjee, and E.J. Riedy. Error bounds from
extra-precise iterative refinement. ACM Transactions on Mathematical Software, 32(2):325–
351, June 2006.

28

[9] M. Gulliksson. Iterative refinement for constrained and weighted linear least squares. BIT,
34(2):239–253, 1994.

[10] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA, 1996.

[11] A. Kielbasinski and H. Schwetlick. Numerische Lineare Algebra: Eine Computerorientierte
Einführung. VEB Deutscher, Berlin, 1988.

[12] Julie Langou, Julien Langou, Piotr Luszczek, Jakub Kurzak, Alfredo Buttari, and Jack Don-
garra. Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit
accuracy (revisiting iterative refinement for linear systems). Technical report, University of
Tennessee, Knoxville, TN, June 2006.

[13] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y. Kang,
A. Kapur, M. C. Martin, B. J. Thompson, T. Tung, and D. J. Yoo. Design, Implementation
and Testing of Extended and Mixed Precision BLAS. ACM Trans. Mathematical Software,
28(2):152–205, 2002.

[14] W. Oettli and W. Prager. Compatibility of approximate solution of linear equations with given
error bounds for coefficients and right hand sides. Num. Math., 6:405–409, 1964.

[15] J.K. Reid. Implicit scaling of linear least squares problems. BIT, 40(1):146–157, 2000.

[16] J. Rigal and J. Gaches. On the compatibility of a given solution with the data of a linear
system. J. ACM, 14(3):543–548, 1967.

[17] G. W. Stewart. On the perturbation of pseudo-inverses, projections and linear least squares
problems. SIAM Review, 19(4):634–662, 1977.

[18] B. Walden, R. Karlson, and Sun. J. Optimal backward perturbation bounds for the linear
least squares problem. Num. Lin. Alg. with Appl., 2(3):271–286, 1995.

[19] Roy H. Wampler. A report on the accuracy of some widely used least squares computer
programs (in applications). Journal of the American Statistical Association, 65(330):549–565,
1970.

29

