
Multithreaded Community Monitoring for
Massive Streaming Graph Data

Jason Riedy David A. Bader
College of Computing

Georgia Institute of Technology
Atlanta, GA, USA

Abstract—Analyzing static snapshots of massive,
graph-structured data cannot keep pace with the
growth of social networks, financial transactions,
and other valuable data sources. Current state-of-
the-art industrial methods analyze these streaming
sources using only simple, aggregate metrics. There
are few existing scalable algorithms for monitor-
ing complex global quantities like decomposition
into community structure. Using our framework
STING, we present the first known parallel algo-
rithm specifically for monitoring communities in
this massive, streaming, graph-structured data. Our
algorithm performs incremental re-agglomeration
rather than starting from scratch after each batch
of changes, reducing the problem’s size to that
of the change rather than the entire graph. We
analyze our initial implementation’s performance
on multithreaded platforms for execution time and
latency. On an Intel-based multithreaded platform,
our algorithm handles up to 100 million updates per
second on social networks with one to 30 million
edges, providing a speed-up from 4× to 3700× over
statically recomputing the decomposition after each
batch of changes. Possibly because of our artificial
graph generator, resulting communities’ modularity
varies little from the initial graph.

I. INTRODUCTION

The world is awash in data of all forms. Highway
sensors generate continuous traffic information,
high-throughput sequencers produce vast quantities
of genetic information, people send text and images
constantly, and more. Everyone recognizes the
sheer volume of raw data already surpasses our
analysis capabilities and keeps growing. Much of
this data consists of relationships, providing a rich
and changing graph structure.

To derive insight from the mass of data requires
more than current high-performance, parallel au-
tomatic analysis. Applying static analysis to a
changing network of a billion Facebook users
sharing and communicating content produces in-
formation potentially long after the context has
changed. Tracking closely linked sets of accounts
in Twitter during the Euro 2012 final match between
Spain and Italy would have required analyzing a
graph representing messages arriving at rates up to
fifteen thousand times per second [1]. Analyzing
global computer networks for anomalous or suspect
behavior requires more rapid turn-around time than
static algorithms deliver. Emerging applications
require more complex graph analysis that adapts
quickly to changing graph data by working with
the stream of information as it arrives.

Much work on analysis of streaming, graph-
structured data focuses primarily on aggregate infor-
mation like counts and averages. These sufficient
statistics assist in diffusion models for accurate
trend prediction in power-law networks [2] and
other applications, but do not help with more
complex analysis like guiding sampling for ap-
proximate centrality measures. Here we build on
our previous work in both complex analysis of
streaming graph data [3], [4], [5] and community
detection in static graphs [6], [7], [8] to provide
the first algorithm for maintaining a community
decomposition of a changing, undirected social
network. On an Intel-based multithreaded platform,
our algorithm handles up to 100 million updates per
second on social networks with one to 30 million
edges, providing a speed-up from 4× to 3700×
over statically recomputing the decomposition after

each batch of changes. On a Cray XMT2, our
algorithm provides provides a speed-up from 1.3×
to almost 3200× over static recomputation. In
all cases, the static recomputation uses a highly
scalable multithreaded algorithm[7], [8], [6].

Note that our use, analysis of streaming data,
differs from streaming algorithms and dynamic al-
gorithms in computer science. We optimize analysis
performance by using batches of streaming data
to reduce the problem size. Streaming algorithms
consider using a minimal amount of memory while
passing over a data set once or possibly many times.
Dynamic algorithms specialize data structures and
algorithms for completely dynamic operations. Our
approach maintains a single large data structure,
STINGER, and incrementally updates analysis
results using smaller, analysis-kernel-specific data
structures, adopting ideas from both bodies of
existing work.

A. STING, a Framework for Streaming, Graph-
Structured Data Analysis

To tackle analysis in these new situations, we
are developing the free STING (Spatio-Temporal
Interaction Networks and Graphs) framework1 [3],
[5], [4]. STING balances portability, productivity,
and performance for research and development.
Our young framework accumulates batches of
edge changes into a semantic graph data structure,
STINGER (STING Extensible Representation), and
runs analysis kernels to monitor graph properties.
STING is a C framework portable across POSIX
and OpenMP platforms as well as the Cray XMT.
STING includes kernels maintaining vertex-local
quantities like clustering coefficients [5] and global
information like connected component labeling [4].

Here we add maintaining a global community de-
composition through edge insertions and removals.
Edge insertions add new edges or increment the
weight of existing edges. Edge removals entirely
delete an edge from the graph if the edge exists.

B. Outline

This paper introduces the first community mon-
itoring analysis kernel for STING. To our knowl-
edge, this is not only the first parallel algorithm but

1Available at http://www.cc.gatech.edu/stinger/.

the first algorithm at all to update communities
rather than recompute them from scratch. Our
algorithm runs in time proportional to the amount
of the graph affected by the batch of changes plus
the size of a graph representing the community
structure, a much smaller graph than the entire
network. Section II describes the algorithm and
important implementation details. Section III spec-
ifies our test case generator. We begin with a real-
world graph and add artificial edges to measure our
implementation’s performance in Section IV.

II. RE-AGGLOMERATION ALGORITHM

We adapt our static parallel agglomerative com-
munity detection algorithm for streaming data by
re-agglomeration. The algorithm adapts the commu-
nity mapping by extracting affected vertices from
a contracted graph representing the communities
and then re-applying the static algorithm to this
much smaller graph. We briefly outline our static
parallel agglomerative community detection algo-
rithm and data structure [6], [7], [8], highlighting
adaptations to streaming data. Then we describe
the re-agglomeration in more detail, particularly the
process of modifying the community graph. Our
implementation’s source code is available in the
STING development repository.

A. Static Agglomerative Community Detection

The agglomerative algorithm takes an initial
graph as input and returns a contracted community
graph as well as a mapping from the initial graph’s
vertices to the community labels. The community
graph has a vertex for each community. An edge
between two communities exists when any vertex
in one community has a neighbor in the other. The
community edge weight is the sum of all edges
between the two communities.

Our algorithm for streaming data applies our
prior static agglomerative algorithm to an updated
community graph. If the community graph is
denoted by the pair GC = (C,EC), where C is the
set of communities and EC are the weighted edges
between communities, then each agglomeration step
requires O(|EC |) operations, both arithmetic and
memory [7].

2

The static agglomerative algorithm works on a
simple edge list data structure. Each graph edge
{i, j;w} between vertices i 6= j with weight w
is stored exactly once in an array of all edges.
Self-edge weights are accumulated in a separate
array; a self-edge weight of zero implies there are
no self edges. This structure permits low-overhead
parallelization across the entire edge list.

The static algorithm repeats three phases until
the community metric stops improving: scoring,
matching, and contraction. Scoring assigns to each
edge the change in the community metric. Here we
use modularity for the community metric. Scoring
details are available in prior work; the important
feature is that the score of an edge relies only on
information local to the edge and its endpoints.

In matching, our algorithm computes a maximal
matching that greedily maximizes the sum of the
matching’s edges’ scores. A matching with large
score suffices for local metric optimization; we do
not require the maximum weight maximal matching.
Our algorithm provides a matching with total score
within a factor of two of the maximum score.

The matching identifies edges to contract. The
contraction phase implements this contraction from
one community graph to another. Community graph
vertices are relabeled with new vertex identifiers,
the edges are binned in parallel by the first stored
vertex, and each bin is collapsed to accumulate
redundant edges weights. To spread load, edges
between vertices i and j are stored in a hashed
order. If the vertices are both even or both odd,
i is stored first, otherwise j is stored first. This
seems sufficient to prevent any one vertex bin
from growing too large. We re-use the contraction
algorithm to incorporate graph changes from the
incoming data stream.

B. Agglomeration for Streaming Data

Our streaming re-agglomeration algorithm works
by de-agglomerating the community graph and then
applying the static agglomeration algorithm to the
expanded community graph. We extract vertices
affected by edge changes from their communities
and re-start the agglomeration process. The ex-
panded community graph is far smaller than the
full network. As before, the community graph is

GC = (C,EC). The full graph is G = (V,E) with
vertex set V and edge set E.

The algorithm uses the full graph G represented
with STINGER, the maintained community graph
GC represented in an edge list as in Section II-A,
and a handful of work arrays. Our current imple-
mentation uses O(|V |) storage for work arrays and
maintains GC using storage beyond the minimal
|C|+3|EC |, but this could be changed to reallocate
and copy as needed with some performance penalty.
The community updates occur after applying the
batch of changes to the STINGER graph structure.

We assume edges inserted within communities
or removed between communities will not cause
the communities to split or merge. This is true
for edge-local agglomeration using metrics like
modularity but may not be true for all metrics.
This assumption may reduce the number of changes
under consideration drastically.

To implement the reduction, we scan the batch
of changes for active vertices. We consider a vertex
active if it appears as an endpoint for a changed
edge that is either inserted between communities
or removed within a community. Let ∆V be the
set of active vertices represented in a list of size
at most |V |.

After the batch of actions is applied to the
STINGER structure, our algorithm executes the
following steps:

1) Collect active vertices as defined above into
∆V using a scatter/gather buffer and atomic
compare-and-swap operations.

2) Extract the vertices in ∆V from their existing
communities, appending edges to GC to ac-
count for the edge changes (see Algorithm 1).

3) Collapse GC to accumulate the edge changes
using a self-contraction.

4) Re-run agglomeration on GC .
Note that our algorithm will not necessarily

detect when a community is split into separate
components. Using a component tracking kernel [4]
as input is future work.

C. Modifying the Edge List

De-agglomerating the vertices in ∆V requires ex-
tracting graph vertices into new community vertices

3

within GC , modifying existing edge weights, and in-
serting new edges touching the new community ver-
tices. This uses at small multiple of |V | workspace.
The final contraction and re-agglomeration require
5|C ′| + 3|E′

C | space [7], where G′ = (C ′, E′
C)

is the de-agglomerated graph. The edge list mod-
ification takes the community graph GC with
community vertex counts as input along with the
global STINGER graph G, the batch of edge
changes, and an |V |-long array cmap[] mapping
vertices in G to community labels. The workspace
holds the list ∆V of active vertices and an array
mark[] set to extracted vertex community ids or -1
for vertices not extracted into new communities.

The pseudo-code for extracting vertices and
adjusting edge weights is in Algorithm 1. Loops
are parallel across vertices in ∆V . With additional
atomic operations, loops across the adjacency lists
could be parallel, which may improve performance
on architectures with fine-grained threading.

After the edge list is updated with adjustment
edges, we commit the new community labels
in mark[] to cmap[] in parallel. We then call
our existing edge list contraction routine from
prior work to collapse duplicate edges, correcting
their weights for the extraction operations. Our
implementation slightly optimizes the case of self-
contraction, but otherwise the contraction algorithm
is the same as in [7], [8].

III. GENERATING TEST CASES

To test performance of the Section II’s algorithm,
we rely on artificial edge action streams applied
to topical real-world graphs. The generated test
cases are not intended to model real-world changes
perfectly but only well enough to verify and debug
our algorithm performance. Real-world data sets
like public actions at GitHub2 or Stack Exchange3

require significant data extraction and model cu-
ration. We test difficult-case performance using
artificial data.

Testing against artificial data suffices to demon-
strate rough algorithm performance. Our test cases

2http://www.githubarchive.org/
3http://www.clearbits.net/creators/146-stack-exchange-data-

dump

Data: community graph GC , array cmap
mapping vertices to old community ids, an
array with each old community size, and
array mark that, when non-negative,
maps vertices to new community ids

Result: GC with appended edges adjusting for
the batch changes

foreach vertex i ∈ ∆V (in parallel) do
Atomically subtract one from i’s
community’s size;
if the result is not zero then

Atomically obtain a new community id
(≥ 0) by incrementing the number of
communities;
Set mark[i] to the new community id;
Set the community size of mark[i] to
one;

else the last vertex stays in its old
community

Restore the community size to one.;
Set mark[i] to -1.;

foreach vertex i ∈ ∆V with mark[i] ≥ 0 (in
parallel) do

foreach neighbor j with weight w from
STINGER do

begin remove old edges
if cmap[i] 6= cmap[j] then append
{cmap[i], cmap[j];−w} to GC (only
once by requiring mark[j] < 0 or
cmap[i] < comm[j]);
else atomically subtract w from i’s
community weight (sum of all
internal edges);

begin append new edges
if mark[i] = mark[j] then i and j
are in the same new community so
accumulate w into the new
community weight;
else if mark[j] < 0 then append
{mark[i], cmap[j];w} to GC ;
else append {mark[i],mark[j];w} to
GC when mark[i] < mark[j];

Algorithm 1: Extracting individual vertices to
new communities (containing only those vertices)
and appending edges to account for the weight
changes.

are not entirely artificial. Each starts with a real-

4

world graph from the 10th DIMACS Implemen-
tation Challenge4 [9] on graph partitioning and
clustering. We then generate a stream of edge
insertions between the initial graph’s vertices and
removals from initial or inserted graph edges. Each
action is an insertion with probability 15/16 and a
removal with probability 1/16.

Given a graph, the generator computes an initial
community decomposition. The decomposition is
both the starting community used in Section IV’s
experiments and also the source of edge actions.
The edge actions are generated based only on this
initial decomposition. The generator is memory-less
and does not update the graph based on previously
generated edges.

To generate an edge insertion, the generator
chooses two distinct communities without replace-
ment with probability proportional to their average
weighted volume, the average weight of all edges
adjacent to the community’s vertices. An endpoint
is chosen from each community with probability
inversely proportional to its degree. This adds
edges between lightly connected vertices in large
communities.

Generating edge removals emphasizes existing
edges within the graph, but occasional removals
of previously removed edges occur. We first fill
a queue of initial removals by sampling 2|V |/|E|
edges randomly from the original graph. Generated
removals are extracted from that queue until it is
empty. Afterwards, removals are sampled randomly
previously inserted edges. Neither case protects
against removing the same edge twice. Multiple
removals test correctness and performance in the
face of somewhat noisy data.

IV. EXPERIMENTS AND RESULTS

We apply our re-agglomeration algorithm to
data sets generated from three different real-world
graphs and consider total performance, parallel
scalability, and speed-up over static recomputation.
In each case, the modularity appears roughly similar
across all the changes. Further analysis of the
dynamic and static result communities is necessary
for detailed community quality comparisons.

4http://www.cc.gatech.edu/dimacs10/

A. Graphs and Generated Actions

We use the three graphs in Table I for our
initial experiments. These are drawn from the
10th DIMACS Implementation Challenge repository.
The graph caidaRouterLevel is a graph depicting a
router-level view of the Internet collected by the
Cooperative Association for Internet Data Analysis
(CAIDA) in 2003. The graph coPapersDBLP con-
nects papers in the Digital Bibliography and Library
Project by co-authorship [10]. And graph eu-2005
is a small web crawl of the .eu domain [11]. Table I
provides both the initial graph sizes and the sizes
of the contracted initial community graph.

Each experiment begins from the same initial
community graph. For each graph, we generate five
million edge actions as described in Section III.
All experiments for different batch sizes start
from the same initial community graph and use
the same edge actions. Experiments apply five
consecutive batches of actions individually to the
initial community graph, and each experiment is
repeated five times to capture system variability.
Our experiments use batch sizes of 1, 3, 10, 30, ...,
up to one million. Plots do not show all sizes to
reduce visual noise. Plots also are limited to the
Intel-based platform for space.

B. Multithreaded Platforms

We evaluate parallel performance on two differ-
ent threaded hardware architectures, an Intel-based
server and the Cray XMT2.

The Intel-based server platform is located at
Georgia Tech. It has four eight-core Intel Xeon
E7-4820 processors running at 2 GHz with 18 MiB
of L3 cache per processor. The processors support
HyperThreading, so the 32 physical cores appear
as 64 logical cores. This server is equipped with
1 TiB of 1 067 MHz DDR3 RAM.

The next generation Cray XMT2 is located at
the Swiss National Supercomputing Centre (CSCS).
Its 64 processors run at 500 MHz and support four
times the memory density of the Cray XMT for a
total of 2 TiB. These 64 processors support over
6 400 hardware thread contexts. The improvements
over the XMT also include additional memory
bandwidth within a node, but exact specifications
are not yet officially available.

5

Name |V | |E| |C| |EC |

caidaRouterLevel 192 244 1 218 132 18 343 30 776
coPapersDBLP 540 486 30 866 466 1 401 205 856

eu-2005 862 664 16 138 468 55 624 194 971
TABLE I

TEST GRAPHS. ALL GRAPHS ARE UNDIRECTED AND COUNTS IGNORE SELF-LOOPS. |C| IS THE NUMBER OF COMMUNITIES,
AND |EC | IS THE NUMBER OF EDGES BETWEEN COMMUNITIES.

The Cray XMT allocates entire processors to
applications, each with at least 100 threads, while
the OpenMP platforms allocate individual threads
which are mapped to cores. Results are shown
per-Cray-XMT processor and per-OpenMP-thread.
We run up to the number of physical Cray XMT
processors or logical Intel cores. Intel cores are
allocated in a round-robin fashion across sockets,
then across physical cores, and finally logical
cores. The Intel-based system allocates 2 MiB large
memory pages interleaved across sockets.

C. Update Rates and Latencies

Different users may require different measures
of performance. Non-interactive uses may prefer
a large aggregate update rate, while interactive
queries may require rapid response. Rapid response
translates to a low latency between community
updates. Measured times include both updating the
STINGER data structure as well as the community
decomposition.

Table II provides the peak update rates achieved
on our three test cases. The peak update rates
require large batch sizes with relatively large
latency. Table III considers the lowest latency. The
lowest latencies are in microseconds but achieve a
peak update rates three to five orders of magnitude
below the peak. For both cases, the speed-ups
over repeating static global community detection
ranges from 4× to 3500×, showing the benefit of
incremental updates. The lowest speed-ups occur
with caidaRouterLevel and batch sizes nearly equal
to the number of edges in the original graph.

Figures 1 and 2 show the multithreaded scaling
of our update algorithm on a subset of batch sizes.
The incremental updates work on relatively little
data, limiting the total scalability. Small batch sizes
reduce the incremental work to moving a handful
of vertices with little room for parallelization. For

large updates, our algorithm effectively uses up to
16 threads. This provides fast updates while leaving
additional resources for applying other analysis
kernels to the same data. Figure 3 shows the speed-
up over static global re-computation by threads. The
speed-up over recomputation decreases as the batch
size and thread size increase; the static algorithm
scales very well with increasing thread count on
these graphs [8].

V. RELATED WORK

There is little work targeting incremental clus-
tering for community metrics like modularity in
a massive, changing graph. Existing work like
Nguyen, et al. [12] applies similar incremental tech-
niques but sequentially. Other work like Bourqui,
et al. [13] applies repeated static analysis instead of
updating the communities incrementally. A recent
survey by Fortunato [14] covers many aspects of
community detection with an emphasis on modu-
larity maximization. Fortunato covers on dynamic
communities from the perspective of community
characteristics. One notable earlier work, Hopcraft,
et al. [15], finds that agglomerative methods are
very sensitive to the order of agglomeration. They
apply static clustering to large, randomly selected
subsets to identify stable “natural communities.”
The implications on our method may become more
clear as we investigate the tracked community
quality.

Graph partitioning, graph clustering, and commu-
nity detection are tightly related topics. There is a
vast literature on adapting graph partitions for finite-
element, finite-volume and other physical applica-
tions. These established methods are incorporated in
state-of-the-art software packages like Zoltan [16]
and Trilinos [17]. They focus on equal-work or
-communication partitions for load balancing and
not on optimizing community clustering metrics.

6

Graph Platform # threads Batch Size Updates/Sec Speed-up Latency (s)

caidaRouterLevel IA32-64 56 100000 1.20e+07 4.01e+01 8.34e-03
XMT 56 1000000 2.49e+06 4.28e+00 4.01e-01

coPapersDBLP IA32-64 20 1000000 2.89e+06 1.08e+01 3.46e-01
XMT 48 300000 2.23e+06 2.09e+01 1.35e-01

eu-2005 IA32-64 40 100000 4.79e+06 3.27e+02 2.09e-02
XMT 64 1000000 2.05e+06 4.26e+01 4.88e01

TABLE II
PEAK UPDATES PER SECOND. SPEED-UP MEASURES THE SPEED-UP OVER STATIC RECOMPUTATION AND NOT THE PARALLEL

SPEED-UP.

Graph Platform # threads Batch Size Updates/Sec Speed-up Latency (s)

caidaRouterLevel IA32-64 2 1 4.64e+02 4.28e+02 2.16e-03
caidaRouterLevel XMT 4 30 5.15e+03 2.29e+02 5.83e03
coPapersDBLP IA32-64 4 30 7.01e+03 1.85e+03 4.28e-03
coPapersDBLP XMT 40 1 1.40e+02 3.80e+02 7.12e03

eu-2005 IA32-64 12 1 4.17e+02 3.50e+03 2.40e-03
eu2005 XMT 20 10 1.53e+03 3.18e+03 6.54e03

TABLE III
LEAST LATENCY BETWEEN COMMUNITY UPDATES. SPEED-UP MEASURES THE SPEED-UP OVER STATIC RECOMPUTATION

AND NOT THE PARALLEL SPEED-UP.

caidaRouterLevel coPapersDBLP eu−2005

1e+03

1e+05

1e+07

IA
32−

64

4 8 12 16 4 8 12 16 4 8 12 16

Threads (x86)

U
pd

at
es

 p
er

 s
ec

on
d

Batch size

1

10

100

1000

10000

100000

300000

1000000

Fig. 1. Updates per second by threads for each test graph and batch size per platform. The solid line connects the median
points.

7

caidaRouterLevel coPapersDBLP eu−2005

0.1

10.0
IA

32−
64

4 8 12 16 4 8 12 16 4 8 12 16

Threads (x86)

La
te

nc
y:

 s
ec

on
ds

 p
er

 b
at

ch

Batch size

1

10

100

1000

10000

100000

300000

1000000

Static

Fig. 2. Latency (seconds per batch) by threads for each test graph and batch size per platform. The solid line connects
the median points. The best static algorithm execution time on the original graph is shown for comparison. The horizontal
dashed line represents 30 frames per second, or real-time animation speed. Note that the large batch size rewrites almost all of
caidaRouterLevel.

Many techniques are similar, but their physically-
based graphs often have sufficiently different struc-
ture from social networks that different performance
optimizations and parallel methods apply.

Our previous work [6], [7], [8] established and
extended the first parallel agglomerative algorithm
for community detection and provided results
on the Cray XMT. Prior modularity-maximizing
algorithms sequentially maintain and update priority
queues [18], and we replace the queue with a
weighted graph matching. Separately, Fagginger
Auer and Bisseling developed a similar modularity-
optimizing clustering algorithm [19] targeting
GPUs.

Gehweiler and Meyerhenke [20] proposed a dis-
tributed diffusive heuristic for implicit modularity-
based graph clustering. A diffusive heuristic could
be adapted for refining a community mapping.
Applying refinement after each batch would adapt

any such algorithm to streaming scenarios. Re-
finement needs targeted to the graph changes for
high performance, however. Work on sequential
multilevel agglomerative algorithms like [21] with
a focus on edge scoring and local refinement also
could be adapted to streaming settings.

VI. OBSERVATIONS AND DIRECTIONS

Our streaming community re-agglomeration al-
gorithm achieves high aggregate performance and
low-latency updates (although not simultaneously)
by working on a far smaller problem than global
community detection. The reduced problem size
limits parallel scalability of re-agglomeration but
still performs better than recomputing with a state-
of-the-art scalable static community detection code.

Further work needs to incorporate commu-
nity quality into the trade-off between aggregate
performance and latency. On initial inspection,
community quality as measured by modularity

8

caidaRouterLevel coPapersDBLP eu−2005

10

1000
IA

32−
64

4 8 12 16 4 8 12 16 4 8 12 16

Threads (x86)

S
pe

ed
−

up
 o

ve
r

st
at

ic

Batch size

1

10

100

1000

10000

100000

300000

1000000

Fig. 3. Speed-up over static recomputation by threads for each test graph and batch size per platform. The solid line connects
the median points. The static, parallel algorithm scales very well, but the smaller data set with incremental updates remains
faster.

changes very little. Longer-scale experiments are
needed. Improvements may require repeated re-
agglomeration, cascading changes beyond the initial
affected vertex set ∆V . Refining communities
according to the metric also may prove interesting
not only for quality but also to remove the initial
global decomposition. However, refinement requires
investigating specific community metrics and is
not as agnostic as our current approach. Tracking
component changes is not necessary for optimizing
many community metrics but is important in prac-
tice. We are extending STING to support combining
our existing component tracker with community
monitoring.

ACKNOWLEDGMENTS

This work was supported in part by the Pacific
Northwest National Lab (PNNL) Center for Adap-
tive Supercomputing Software for MultiThreaded
Architectures (CASS-MT) and the Intel Labs Aca-

demic Research Office for the Parallel Algorithms
for Non-Numeric Computing Program. We thank
PNNL and the Swiss National Supercomputing
Centre for providing access to Cray XMT systems
and Oracle for the Intel-based server. We also thank
graduate students Rob McColl and David Ediger
for continuing maintenance of the STING software
framework.

The work depicted in this paper was partially
sponsored by Defense Advanced Research Projects
Agency (DARPA) under agreement #HR0011-13-2-
0001. The content, views and conclusions presented
in this document do not necessarily reflect the
position or the policy of DARPA or the U.S.
Government, no official endorsement should be
inferred. Distribution Statement A: “Approved for
public release; distribution is unlimited.”

REFERENCES

[1] M. Rios, “Euro 2012 recap,” 2012, http://blog.twitter.
com/2012/07/euro-2012-recap.html.

9

[2] Y. Altshuler, W. Pan, and A. Pentland, “Trends
prediction using social diffusion models,” in Social
Computing, Behavioral - Cultural Modeling and
Prediction, ser. Lecture Notes in Computer Science,
S. Yang, A. Greenberg, and M. Endsley, Eds. Springer
Berlin Heidelberg, 2012, vol. 7227, pp. 97–104. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-29047-3
12

[3] D. Ediger, J. Riedy, D. A. Bader, and H. Meyerhenke,
“Computational graph analytics for massive streaming
data,” in Large Scale Network-Centric Computing Sys-
tems, ser. Parallel and Distributed Computing, H. Sarbazi-
azad and A. Zomaya, Eds. Wiley, Jul. 2013, ch. 25, (to
appear).

[4] D. Ediger, E. J. Riedy, D. A. Bader, and H. Meyerhenke,
“Tracking structure of streaming social networks,” in
Proc. Workshop on Multithreaded Architectures and
Applications (MTAAP), Anchorage, Alaska, May 2011.

[5] D. Ediger, K. Jiang, E. J. Riedy, and D. A. Bader,
“Massive streaming data analytics: A case study with clus-
tering coefficients,” in Proc. Workshop on Multithreaded
Architectures and Applications (MTAAP), Atlanta, Geor-
gia, Apr. 2010.

[6] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader,
“Parallel community detection for massive graphs,” in
Proceedings of the 9th International Conference on
Parallel Processing and Applied Mathematics, Torun,
Poland, Sep. 2011.

[7] E. J. Riedy, D. A. Bader, and H. Meyerhenke, “Scalable
multi-threaded community detection in social networks,”
in Workshop on Multithreaded Architectures and Appli-
cations (MTAAP), Shanghai, China, May 2012.

[8] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader,
“Parallel community detection for massive graphs,” 10th
DIMACS Implementation Challenge - Graph Partitioning
and Graph Clustering, Atlanta, GA, Tech. Rep., Feb. 2012.
[Online]. Available: http://www.cc.gatech.edu/dimacs10/
papers/[15]-dimacs10-community-detection.pdf

[9] D. Bader, H. Meyerhenke, P. Sanders, and D. Wagner,
“Competition rules and objective functions for the 10th DI-
MACS Implementation Challenge on graph partitioning
and graph clustering,” Sep. 2011, http://www.cc.gatech.
edu/dimacs10/data/dimacs10-rules.pdf.

[10] R. Geisberger, P. Sanders, and D. Schultes, “Better ap-
proximation of betweenness centrality,” in 10th Workshop
on Algorithm Engineering and Experimentation. San
Francisco: SIAM, 2008, pp. 90–108.

[11] P. Boldi, B. Codenotti, M. Santini, and S. Vigna,
“Ubicrawler: A scalable fully distributed web crawler,”

Software: Practice & Experience, vol. 34, no. 8, pp.
711–726, 2004.

[12] N. Nguyen, T. Dinh, Y. Xuan, and M. Thai, “Adaptive
algorithms for detecting community structure in dynamic
social networks,” in INFOCOM, 2011 Proceedings IEEE,
april 2011, pp. 2282 –2290.

[13] R. Bourqui, F. Gilbert, P. Simonetto, F. Zaidi, U. Sha-
ran, and F. Jourdan, “Detecting structural changes and
command hierarchies in dynamic social networks,” in
Social Network Analysis and Mining, 2009. ASONAM
’09. International Conference on Advances in, july 2009,
pp. 83 –88.

[14] S. Fortunato, “Community detection in graphs,” Physics
Reports, vol. 486, no. 3-5, pp. 75 – 174, 2010.

[15] J. Hopcroft, O. Khan, B. Kulis, and B. Selman, “Tracking
evolving communities in large linked networks,”
Proceedings of the National Academy of Sciences
of the United States of America, vol. 101, no.
Suppl 1, pp. 5249–5253, 2004. [Online]. Available:
http://www.pnas.org/content/101/suppl.1/5249.abstract

[16] K. Devine, E. Boman, R. Heaphy, B. Hendrickson,
and C. Vaughan, “Zoltan data management services for
parallel dynamic applications,” Computing in Science
and Engineering, vol. 4, no. 2, pp. 90–97, 2002.

[17] M. Heroux, R. Bartlett, V. H. R. Hoekstra, J. Hu,
T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps,
A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring,
and A. Williams, “An Overview of Trilinos,” Sandia
National Laboratories, Tech. Rep. SAND2003-2927,
2003.

[18] A. Clauset, M. Newman, and C. Moore, “Finding
community structure in very large networks,” Physical
Review E, vol. 70, no. 6, p. 66111, 2004.

[19] B. O. Fagginger Auer and R. H. Bisseling, “Graph
coarsening and clustering on the GPU,” 10th DIMACS
Implementation Challenge - Graph Partitioning and
Graph Clustering, Atlanta, GA, Tech. Rep., Feb. 2012.
[Online]. Available: http://www.cc.gatech.edu/dimacs10/
papers/[16]-gpucluster.pdf

[20] J. Gehweiler and H. Meyerhenke, “A distributed diffusive
heuristic for clustering a virtual P2P supercomputer,” in
Proc. 7th High-Performance Grid Computing Workshop
(HGCW’10) in conjunction with 24th Intl. Parallel and
Distributed Processing Symposium (IPDPS’10). IEEE
Computer Society, 2010.

[21] A. Noack and R. Rotta, “Multi-level algorithms for
modularity clustering,” in Experimental Algorithms, ser.
Lecture Notes in Computer Science, J. Vahrenhold, Ed.
Springer Berlin / Heidelberg, 2009, vol. 5526, pp. 257–
268.

10

