Error and Sensitivity Analysis for Graphs - Jason Riedy, GT

Two kinds of errors out there...

- Graphs imperfectly represent some real phenomenon.
- Friendship: see LinkedIn
- Health data: see privacy
- Computation imperfectly analyzes the graph.
- Data may be "sampled" (aka dropped, lost) for energy...
- Plain old computational error, bugs

Challenge: Quantify and Analyze Errors in Graphs

- Something that happens once in a billion times will pop up in large graphs...
- Except in limited cases, we don't know what we're doing.

Quick Example: Global Clustering Coefficient

From Zakrzewska \& Bader, "Measuring the Sensitivity of Graph Metrics to Missing Data," PPAM 2013

Fraction of graph used (kinda)

Quick Example: Local Clustering Coefficients

From Zakrzewska \& Bader, "Measuring the Sensitivity of Graph Metrics to Missing Data," PPAM 2013

Fraction of graph used (kinda)

Quick Example: Streaming Magnifies Errors Updating PageRank via simple linear algebra:

Ranking looks just fine! Until everything falls apart... Paying attention to the initial error works.

Challenge: Build Error \& Sensitivity Analysis for Graphs

Possible starting points

How do you measure or model error in...

- connected components?
- Is the graph a window into the "real" network?
- Can you leverage link prediction between components?
- Measure precision and recall against... what?
- linear-algebra-ish metrics like PageRank?
- Is this easier?
- Mapping backward error analysis to a discrete matrix...

What is success?

Building mental and formal methods for addressing error and sensitivity that can be condensed to rules of thumb.

