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Exascale Data Analysis

Health care Finding outbreaks, population epidemiology

Social networks Advertising, searching, grouping

Intelligence Decisions at scale, regulating algorithms

Systems biology Understanding interactions, drug design

Power grid Disruptions, conservation

Simulation Discrete events, cracking meshes

The data is full of semantically rich relationships.
Graphs! Graphs! Graphs!
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Graphs are pervasive

• Sources of massive data: petascale simulations, experimental
devices, the Internet, scientific applications.

• New challenges for analysis: data sizes, heterogeneity,
uncertainty, data quality.

Astrophysics
Problem Outlier detection
Challenges Massive data
sets, temporal variation
Graph problems Matching,
clustering

Bioinformatics
Problem Identifying target
proteins
Challenges Data
heterogeneity, quality
Graph problems Centrality,
clustering

Social Informatics
Problem Emergent behavior,
information spread
Challenges New analysis,
data uncertainty
Graph problems Clustering,
flows, shortest paths
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These are not easy graphs.
Yifan Hu’s (AT&T) visualization of the Livejournal data set
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But no shortage of structure...

Protein interactions, Giot et al., “A Protein
Interaction Map of Drosophila melanogaster”,
Science 302, 1722-1736, 2003.

Jason’s network via LinkedIn Labs

• Globally, there rarely are good, balanced separators in the
scientific computing sense.

• Locally, there are clusters or communities and many levels of
detail.
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Also no shortage of data...

Existing (some out-of-date) data volumes

NYSE 1.5 TB generated daily into a maintained 8 PB archive

Google “Several dozen” 1PB data sets (CACM, Jan 2010)

LHC 15 PB per year (avg. 21 TB daily)
http://public.web.cern.ch/public/en/lhc/

Computing-en.html

Wal-Mart 536 TB, 1B entries daily (2006)

EBay 2 PB, traditional DB, and 6.5PB streaming, 17 trillion
records, 1.5B records/day, each web click is 50-150
details. http://www.dbms2.com/2009/04/30/

ebays-two-enormous-data-warehouses/

Faceboot 845 M users... and growing.

• All data is rich and semantic (graphs!) and changing.

• Base data rates include items and not relationships.
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General approaches

• High-performance static graph analysis
• Develop techniques that apply to unchanging massive graphs.
• Provides useful after-the-fact information, starting points.
• Serves many existing applications well: market research, much

bioinformatics, ...

• High-performance streaming graph analysis
• Focus on the dynamic changes within massive graphs.
• Find trends or new information as they appear.
• Serves upcoming applications: fault or threat detection, trend

analysis, ...

Both very important to different areas.
Remaining focus is on streaming.

Note: Not CS theory streaming, but analysis of streaming data.
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Why analyze data streams?

Data volumes

NYSE 1.5TB daily

LHC 41TB daily

Facebook Who knows?

Data transfer
• 1 Gb Ethernet: 8.7TB daily at

100%, 5-6TB daily realistic

• Multi-TB storage on 10GE: 300TB
daily read, 90TB daily write

• CPU ↔ Memory: QPI,HT:
2PB/day@100%

Data growth

• Facebook: > 2×/yr

• Twitter: > 10×/yr

• Growing sources:
Bioinformatics,
µsensors, security

Speed growth

• Ethernet/IB/etc.: 4× in next 2
years. Maybe.

• Flash storage, direct: 10× write,
4× read. Relatively huge cost.
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Overall streaming approach

Protein interactions, Giot et al., “A Protein
Interaction Map of Drosophila melanogaster”,
Science 302, 1722-1736, 2003.

Jason’s network via LinkedIn Labs

Assumptions

• A graph represents some real-world phenomenon.
• But not necessarily exactly!
• Noise comes from lost updates, partial information, ...
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Overall streaming approach

Protein interactions, Giot et al., “A Protein
Interaction Map of Drosophila melanogaster”,
Science 302, 1722-1736, 2003.

Jason’s network via LinkedIn Labs

Assumptions

• We target massive, “social network” graphs.
• Small diameter, power-law degrees
• Small changes in massive graphs often are unrelated.
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Overall streaming approach

Protein interactions, Giot et al., “A Protein
Interaction Map of Drosophila melanogaster”,
Science 302, 1722-1736, 2003.

Jason’s network via LinkedIn Labs

Assumptions

• The graph changes, but we don’t need a continuous view.
• We can accumulate changes into batches...
• But not so many that it impedes responsiveness.
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Difficulties for performance

• What partitioning
methods apply?

• Geometric? Nope.
• Balanced? Nope.
• Is there a single, useful

decomposition?
Not likely.

• Some partitions exist, but
they don’t often help
with balanced bisection or
memory locality.

• Performance needs new
approaches, not just
standard scientific
computing methods.

Jason’s network via LinkedIn Labs
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STING’s focus

Source data

predictionaction

summary

Control

VizSimulation / query

• STING manages queries against changing graph data.
• Visualization and control often are application specific.

• Ideal: Maintain many persistent graph analysis kernels.
• Keep one current snapshot of the graph resident.
• Let kernels maintain smaller histories.
• Also (a harder goal), coordinate the kernels’ cooperation.

• Gather data into a typed graph structure, STINGER.
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STINGER

STING Extensible Representation:

• Rule #1: No explicit locking.
• Rely on atomic operations.

• Massive graph: Scattered updates, scattered reads rarely
conflict.

• Use time stamps for some view of time.
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Initial results

Prototype STING and STINGER

Monitoring the following properties:

1 clustering coefficients,

2 connected components, and

3 community structure (in progress).

High-level

• Support high rates of change, over 10k updates per second.

• Performance scales somewhat with available processing.

• Gut feeling: Scales as much with sockets as cores.

http://www.cc.gatech.edu/stinger/
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Experimental setup

Unless otherwise noted

Line Model Speed (GHz) Sockets Cores

Nehalem X5570 2.93 2 4
Westmere E7-8870 2.40 4 10

• Westmere loaned by Intel (thank you!)

• All memory: 1067MHz DDR3, installed appropriately

• Implementations: OpenMP, gcc 4.6.1, Linux ≈ 3.0 kernel

• Artificial graph and edge stream generated by R-MAT
[Chakrabarti, Zhan, & Faloutsos].

• Scale x , edge factor f ⇒ 2x vertices, ≈ f · 2x edges.
• Edge actions: 7/8th insertions, 1/8th deletions
• Results over five batches of edge actions.

• Caveat: No vector instructions, low-level optimizations yet.
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Clustering coefficients

• Used to measure “small-world-ness”
[Watts & Strogatz] and potential
community structure

• Larger clustering coefficient ⇒ more
inter-connected

• Roughly the ratio of the number of actual
to potential triangles

v

i

j

m

n

• Defined in terms of triplets.

• i – v – j is a closed triplet (triangle).

• m – v – n is an open triplet.

• Clustering coefficient:
# of closed triplets / total # of triplets

• Locally around v or globally for entire graph.
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Updating triangle counts

Given Edge {u, v} to be inserted (+) or deleted (-)

Approach Search for vertices adjacent to both u and v , update
counts on those and u and v

Three methods

Brute force Intersect neighbors of u and v by iterating over each,
O(dudv ) time.

Sorted list Sort u’s neighbors. For each neighbor of v , check if in
the sorted list.

Compressed bits Summarize u’s neighbors in a bit array. Reduces
check for v ’s neighbors to O(1) time each.
Approximate with Bloom filters. [MTAAP10]

All rely on atomic addition.
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Batches of 10k actions

Threads
Graph size: scale 22, edge factor 16
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Different batch sizes

Threads
Graph size: scale 22, edge factor 16

U
pd

at
es

 p
er

 s
ec

on
ds

, b
ot

h 
m

et
ric

 a
nd

 S
T

IN
G

E
R

103.5

104

104.5

105

105.5

103.5

104

104.5

105

105.5

103.5

104

104.5

105

105.5

Brute force

●●●

●

●

●●

●

●

●●

●●

●

●

●

●

●●●●●●●●
●

●

●

●
●●

●

●

●●

0 20 40 60 80

Bloom filter

●

●

●

●

●

●●

●
●
●
●

●

●

●●●

●●
●●
●

● ●

●

●●
●●● ●●●

●●●

●
●●●

●

●●

0 20 40 60 80

Sorted list

●
●
●

●

●

●
●

●

●●

●

●
●●●●

●●

●

●●
●●●

●
●
●●●

●●

●●

●●●

●

●

●
●●●
● ● ●

●●
●●

0 20 40 60 80

100
1000

10000

Machine

4 x E7−8870

2 x X5570

SIAM PP 2012—Scalable Algorithms for Analysis of Massive, Streaming Graphs—Jason Riedy 21/29



Different batch sizes: Reactivity

Threads
Graph size: scale 22, edge factor 16

S
ec

on
ds

 b
et

w
ee

n 
up

da
te

s,
 b

ot
h 

m
et

ric
 a

nd
 S

T
IN

G
E

R

10−3
10−2.5

10−2
10−1.5

10−1
10−0.5

100

10−3
10−2.5

10−2
10−1.5

10−1
10−0.5

100

10−3
10−2.5

10−2
10−1.5

10−1
10−0.5

100

Brute force

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●

●●●●●●●●
●
●
●
●●●

●

●

●●

0 20 40 60 80

Bloom filter

●

●

●

●

●●

●●●●

●

●
●●●

●●
●●●

● ●

●

●●●●● ●●●

●●●
●●●●

●
●●

0 20 40 60 80

Sorted list

●

●

●

●
●

●

●●
●

●
●●●●

●●

●

●●
●●●

●●●●●

●●

●●

●●●

●

●

●●
●●● ● ●

●●●●

0 20 40 60 80

100
1000

10000

Machine

4 x E7−8870

2 x X5570

SIAM PP 2012—Scalable Algorithms for Analysis of Massive, Streaming Graphs—Jason Riedy 22/29



Connected components

• Maintain a mapping from vertex to
component.

• Global property, unlike triangle
counts

• In “scale free” social networks:
• Often one big component, and
• many tiny ones.

• Edge changes often sit within
components.

• Remaining insertions merge
components.

• Deletions are more difficult...
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Connected components

• Maintain a mapping from vertex to
component.

• Global property, unlike triangle
counts
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• many tiny ones.

• Edge changes often sit within
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• Remaining insertions merge
components.
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Connected components: Deleted edges

The difficult case
• Very few deletions

matter.

• Determining which
matter may require a
large graph search.

• Re-running static
component
detection.

• (Long history, see
related work in
[MTAAP11].)

• Coping mechanisms:
• Heuristics.
• Second level of

batching.
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Deletion heuristics

Rule out effect-less deletions
• Use the spanning tree by-product of static connected

component algorithms.

• Ignore deletions when one of the following occur:

1 The deleted edge is not in the spanning tree.
2 If the endpoints share a common neighbor∗.
3 If the loose endpoint can reach the root∗.

• In the last two (∗), also fix the spanning tree.

Rules out 99.7% of deletions.
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Connected components: Performance

Threads
Graph size: scale 22, edge factor 16
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Common aspects

• Each parallelizes sufficiently well over the affected vertices V ′,
those touched by new or removed edges.

• Total amount of work is O(Vol(V ′)) = O(
∑

v∈V ′ deg(v)).

• Our in-progress work on refining or re-agglomerating
communities with updates also is O(Vol(V ′)).

• How many interesting graph properties can be updated with
O(Vol(V ′)) work?

• Do these parallelize well?

• The hidden constant and how quickly performance becomes
asymptotic determines the metric update rate. What
implementation techniques bash down the constant?

• How sensitive are these metrics to noise and error?

• How quickly can we “forget” data and still maintain metrics?
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Session outline

Emergent Behavior Detection in Massive Graphs :
Nadya Bliss and Benjamin Miller, Massachusetts
Institute of Technology, USA

Scalable Graph Clustering and Analysis with KDT :
John R. Gilbert and Adam Lugowski, University of
California, Santa Barbara, USA; Steve Reinhardt, Cray,
USA

Multiscale Approach for Network Compression-friendly Ordering :
Ilya Safro, Argonne National Laboratory, USA; Boris
Temkin, Weizmann Institute of Science, Israel
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