
STING: Software for Analysis of Spatio-Temporal
Interaction Networks and Graphs

http://www.cc.gatech.edu/stinger/

Dr. David A. Bader
Dr. Jason Riedy
Dr. Henning Meyerhenkea

David Ediger
Rob McColl
Oded Green
Anita Zakrzewska
Rohit Banga

aKarlsruhe Institute of Technology

1. Motivation

Many interesting problems today can be formulated as dynamic spatio-temporal
graph problems:
• monitoring when previously separate groups merge,
• tracking communities within social networks as interactions are added or

relationships removed, and
• identifying bridges between communities or those who switch allegiances over

time.
The development of algorithms and codes for large-scale, dynamic graph problems
proceeds without a common core of data structures or software frameworks.
Cross-evaluation and adoption of new techniques is time-consuming both for
programmers modifying algorithms and systems transforming data structures.
STING’s design aims to reduce inefficiencies in time, space, and productivity with a
canonical graph representation and pluggable analysis kernels.

2. STINGER: Common Data Structure

STINGER provides the central graph store accessed by multiple analysis kernels.
Portability Algorithms written for STINGER can be ported to multiple architectures

and translated between multiple languages.
Productivity STINGER provides a common abstract data structure that the large

graph community can use to quickly evaluate and extend each others’ research
developments, much like common dense and sparse array structures in linear
algebra.

Performance No single data structure is optimal for every graph algorithm.
STINGER provides a sensible data structure that can run most algorithms well.

There should be little performance reduction using STINGER when compared with
other general data structures across a broad set of typical graph algorithms.
STINGER assumes a globally-addressable memory space and supports both
sequential and parallel algorithms.

Logical Vertex Array

Physical
to

Logical

Physical Vertex ID

1

3

6

2

4

5

0

N−1

Edge Block

Edge 1

Edge 2

Edge 3

Edge 4

Edge X

Edge Block Header
Next Block

Pointer
EType

Adj Vertex

ID

Edge

Weight

Vertex ID

Edges

in this
Block

Pointer
Edge Block

out−deg

6

1

17

5

0

0

Smallest Largest

TimestampTimestamp

High
Water Mark

in this
Block

EType 0

EType 1

EType Z

0

1

Z

High Water Mark Length

Len PtrHi

EType Array

VType

Physical

Vertex ID

Vertex
Weight

in−deg

a0

a1

a2

a4

a5

a6

T0

T1

T2

T4

T5

T6

W0

W1

W2

W4

W5

W6

7

6

0

2

23

1

Timestamp
1

Timestamp
2

Mapper

3. STING: Software Framework

Currently targeting both OpenMP on Intel multi-cores and the Cray XMT
environments, STING is a multi-platform software framework for developing both
static and dynamic graph analysis kernels.
Example analysis kernels include the following:

Connected components Maintain a component label for each ver-
tex as edges are inserted and removed. Heuristics tuned for
common social network structure quickly rule out nearly all edge
removals that do not alter the structure.

Clustering coefficients Compute and update per-vertex clustering
coefficients and the graph’s global clustering coefficient. The
clustering coefficient is the ratio of the number of triangles (three
connected edges) to the number of pairs (two connected edges).

j

m

n

Modularity clustering Refine a global partitioning to maintain a large modularity
within each partition. A modular partition is one with more edges inside each
partition than expected by random chance given the degree distribution. (in
progress)

Ongoing work is evaluating a STING framework for PGAS programming
environments like UPC and X10 and also on GPGPU accelerators using NVIDIA’s
CUDA.

4. Example Performance: Connected Components

Task Monitor the connected components while inserting and removing edges in
batches.

Graph small R-MAT graph with 16.7 million vertices and over 250 million edges.
Platform Intel-based server platform located at Georgia Tech with four ten-core Intel

Xeon E7-8870 processors running at 2.40GHz with 30MiB of L3 cache per
processor. The processors support HyperThreading, so the 40 physical cores
appear as 80 logical cores. This server, mirasol, is ranked #17 in the November
2011 Graph 500 list and is equipped with 256 GiB of 1 067 MHz DDR3 RAM.

Threads

U
pd

at
es

 p
er

 s
ec

on
d

50000

100000

150000

●●
●

●
●

● ●

●

20 40 60 80

Batch size

● 100 1000 10000 100000

Threads

S
ec

on
ds

 b
et

w
ee

n
up

da
te

s

0.2

0.4

0.6

0.8

1.0

●
●● ● ● ● ●

●

20 40 60 80

Batch size

● 100 1000 10000 100000

• Batching the edge insertions and removals provides opportunities for parallel
execution and reduce overhead.

• The small graph and relatively small batch sizes limit total performance.
• Increasing the batch size improves total performance but limits the rate at which

we update the connected components. Which is more appropriate depends on a
particular application.

• We plan on supporting kernel cooperation so other kernels can use the
connected component mapping.

5. Acknowldegements

This work was supported in part by the Pacific Northwest National Lab (PNNL)
Center for Adaptive Supercomputing Software for MultiThreaded Architectures
(CASS-MT), NSF Grant CNS-0708307, and the Intel Labs Academic Research
Office for the Parallel Algorithms for Non-Numeric Computing Program. We thank
PNNL and the Swiss National Supercomputing Centre for providing access to Cray
XMT systems.

6. References

• D.A. Bader, J. Berry, A. Amos-Binks, D. Chavarria-Miranda, C. Hastings, K.
Madduri, and S.C. Poulos, ”STINGER: Spatio-Temporal Interaction Networks and
Graphs (STING) Extensible Representation,” Technical Report, May 8, 2009.

• D. Ediger, K. Jiang, J. Riedy, and D.A. Bader, ”Massive Streaming Data Analytics:
A Case Study with Clustering Coefficients,” 4th Workshop on Multithreaded
Architectures and Applications (MTAAP), Atlanta, GA, April 23, 2010.

• D. Ediger, J. Riedy, H. Meyerhenke, and D.A. Bader, ”Tracking Structure of
Streaming Social Networks,” 5th Workshop on Multithreaded Architectures and
Applications (MTAAP), Anchorage, AK, May 20, 2011.

15th SIAM Conference on Parallel
Processing for Scientific Computing

http://www.cc.gatech.edu/stinger/

