
Updating PageRank for Streaming Graphs
Jason Riedy

College of Computing
Georgia Institute of Technology

Atlanta, GA, USA
jason.riedy@cc.gatech.edu

Abstract—Incremental graph algorithms can respond quickly
to small changes in massive graphs by updating rather than
recomputing analysis metrics. Here we use the linear system
formulation of PageRank and ideas from iterative refinement
to compute the update to a PageRank vector accurately and
quickly. The core idea is to express the residual of the original
solution with respect to the updated matrix representing the
graph. The update to the residual is sparse. Solving for the
solution update with a straight-forward iterative method spreads
the change outward from the change locations but converges
before traversing the entire graph. We achieve speed-ups of 2×
to over 40× relative to a restarted, highly parallel PageRank
iteration for small, low-latency batches of edge insertions. These
cases traverse 2× to nearly 10 000× fewer edges than the
restarted PageRank iteration. This provides an interesting test
case for the ongoing GraphBLAS effort: Can the APIs support
our incremental algorithms cleanly and efficiently?

Index Terms—graph analysis; PageRank; streaming graphs

I. INTRODUCTION

PageRank[1] is a common method for ranking graph vertices
using only graph structural information. High PageRank implies
that random walks through the graph tend to visit the highly
ranked vertices. PageRank also is an archetypal linear algebra-
based graph algorithm. Methods for efficiently computing
PageRank inform methods for other, related analysis. Here
we consider efficiently updating PageRank when the graph
is altered as in analyzing streaming data. The incremental
algorithm does not traverse the entire graph, unlike restarting
the PageRank iteration.

There are many applications for PageRank beyond web
seaches [2]. One of interest is using sparse initial probabilities
to provide a personalized PageRank useful for local community
detection [3]. Computing the PageRank update directly may
assist with tracking conductance-minimizing communities anal-
ogous to work on tracking modularity-based communities [4].

Section II derives the updating algorithms by applying
iterative refinement to the linear system formulation of PageR-
ank in Equation (1). Section III details the algorithms and
provides parallel implementation details. We present timing,
edge traversal count, and accuracy results in Section IV that
range from extreme speed-ups of over 40× on small changes
in large graphs to only moderate slow-downs when updating
large portions of tiny, cache-resident graphs when compared to
restarting a PageRank iteration. There are a few accuracy and
performance oddities that require additional investigation. Sec-
tion V discusses requirements on a possible GraphBLAS API

for efficient implementation. These requirements mostly deal
with reducing overhead by combining operations. Minimizing
overhead and optimizing little operations is necessary when
there is no massive-scale graph traversal dominating running
time. And Section VI compares with a sample of existing
related work.

II. UPDATING PAGERANK VIA ITERATIVE REFINEMENT

A directed graph with vertex set V can be represented by a
sparse, unsymmetric matrix A with aij = 1 where there is an
edge i→ j. Here we ignore self edges and let the diagonal of
A be zero. Define D to be the diagonal matrix of out-degrees,
or diagD = A1 where 1 is a |V|-long vector with unit entries.
If a vertex i is the source of no edges, let dii = 1 so that
1/dii = 1. The definitions and algorithms can generalize to
graphs with arbitrary non-negative weights.

While classic PageRank defines an eigenvector problem, a
little algebraic manipulation as in [5], [6] finds an equivalent
linear system

(I − αATD−1)x = (1− α)v, (1)

where α is the “teleportation” constant, v is a personalization
vector, and x is the PageRank vector. For the remainder of the
paper, v is a vector with entries 1/|V| denoting a uniformly
random start, and ‖v‖1 = 1. We discuss the effect of adding
and removing vertices in Section II-A. Solving this system with
inexact arithmetic produces an approximate solution x. The
backward error, or the distance to the nearest system solved
exactly, is measured by the residual r = (1 − α)v − (I −
αATD−1)x.

We incorporate edge insertions and removals by changing
the graph to A∆ = A+ ∆A, also updating implicitly D∆ =
D + ∆D. In general, v∆ denotes v + ∆v. We later will use
plain ∆ to denote the source vertices in a batch of edge updates.
The new residual r′ provides a measure of how well the non-
updated solution x satisfies the updated linear system with
matrix I − αAT∆D

−1
∆ ,

r′ = (1− α)v − x+ αAT∆D
−1
∆ x

= (1− α)v − x+ αATD−1x− αATD−1x+ αAT∆D
−1
∆ x

= r + α(AT∆D
−1
∆ −ATD−1)x.

The operator (AT∆D
−1
∆ − ATD−1) will occur frequently

throughout and has an interesting structure. This operator has
non-zero columns only where ∆A affects the graph, or columns

associated with vertices in ∆. So the change in residual is
sparse when ∆A is small relative to the graph. In that case,
the updated PageRank x∆ = x+ ∆x should be close to the
previous x. In many low-latency applications, ∆A will involve
only tens or hundreds of updates in graph with at least millions
of vertices.

To correct the system and find the update ∆x to the new
solution, we apply iterative refinement. Iterative refinement
is a terrifically efficient application of Newton’s method for
improving the solution of a linear system[7]. Here we solve

(I −AT∆D−1
∆)∆x = r′ = r + α(AT∆D

−1
∆ −ATD−1)x. (2)

If solved exactly, this provides the exact new solution for all
components of x∆. Solved with the same precision used for
the initial system provides a good quality approximation, again
for all components.

We want to use sparseness to minimize graph accesses while
maintaining solution quality. We compute just enough of the
solution to maintain global the convergence condition. Note
that restarting an iterative method to solve PageRank always
works to improve the quality of the entire solution. We are
looking at sparsely targetted improvements.

While there are many, many techniques for solving Equa-
tion (2), here we use the simple iterative Jacobi method.
Jacobi is equivalent to the power method often applied to
the eigensystem formulation. For PageRank, we take equality
satisfied by the true solution, (I−αATD−1)x = (1−α)v, and
then split and rearrange terms to produce an iterative method

x(k+1) = αATD−1x(k) + (1 + α)v,

where x(k) denotes the solution at the kth iteration. The global
convergence of PageRank is determined when the solution
changes by less than a fixed threshold, ‖x(k+1) − x(k)‖1 ≤ τ .
Examples below use τ = 10−4, sufficient accuracy for many
cases.

The equation for ∆x likewise can be converted to an iterative
method,

∆x(k+1) = αAT∆D
−1
∆ ∆x(k) + α(AT∆D

−1
∆ −ATD−1)x+ r.

As before, AT∆D
−1
∆ −ATD−1 has non-zero rows only adjacent

to the changes, so its contribution is sparse. The old residual
r is dense, but refining only the changes requires only those
entries in the pattern of the left-hand side. The change to the
previous iteration is adding entries of r that appear in the new
iterate,

∆x(k+1) = αAT∆D
−1
∆ ∆x(k) + α(AT∆D

−1
∆ −ATD−1)x

+r|∆x(k+1).
(3)

Here we introduce a restriction notation we will abuse
vigorously. The notation r|∆x(k+1) refers to a sparse vector
constructed from the entries of r only on the pattern of the
sparse vector ∆x(k+1), or where entries of ∆x(k+1) have
explicit storage. We do not squeeze out entries that happen
to be numerically zero; that occurs too rarely to bother. The
notation will be used later on explicit sets. x|H restricts the
entries to those vertices in set H.

The best way to update r to the new residual r∆ is expanding
one more step out and fully computing the actual new residual
entries. However, this is only efficient with undirected graphs
with typical row-major storage because it needs access to the
rows of AT∆ or columns of A∆. And in small-diameter graphs
of interest, each step out walks a much larger fraction of the
graph. Instead, we incrementally update the residual. Consider
expanding

r∆ = kv − (I − αAT∆D−1
∆)(x+ ∆x)

= kv − (I − αAT∆D−1
∆)x− (I − αAT∆D−1

∆)∆x

= r′ − (I − αAT∆D−1
∆)∆x

= r + α(AT∆D
−1
∆ −ATD−1)x− (I − αAT∆D−1

∆)∆x.

Then the change ∆r = r∆ − r is

∆r = α(AT∆D
−1
∆ −ATD−1)x+ (I − αAT∆D−1

∆)∆x. (4)

Updating r by explicitly computing Equation (4) will not
suffice for high levels of accuracy like bitwise reproducible
results, but those needs are rare. Hopefully cases that need
extreme accuracy have bursty traffic and can cope with separate
levels of accuracy. Here intermediate calculations are carried
out in IEEE-754 binary double precision; round-off error is
sufficiently small compared to the tolerance τ that it can be
ignored.

Additionally, we can limit expansion of the pattern of ∆x̂ by
not “pushing” small changes out through the (A+ ∆A)T (D+
∆D)−1∆x̂(k) product. Let X be the set of vertices selected
to be expanded in a given step and H be the remaining, held
vertices. Then we can treat the columns associated with H in
the operator as the identity and approximate

∆x(k+1) ≈ ∆x̃(k+1) = αAT∆D
−1
∆ ∆x̃

(k)
X

+α∆x̃
(k)
H + αw + r|∆x̃(k+1).

(5)

Note that the set of held vertices can change at each iteration,
which complicates analysis. Simple algebraic iteration and
upper bounds on ∆x(k+1)−∆x̃(k+1) produce unusable results
much like interval analysis. In this work, we assume a simple
per-vertex threshold controling the trade-off between accuracy
and expansion size.

A. Adding and Removing Vertices

The assumptions used for adding and removing vertices
are quite application dependent. Often there can be some
reasonable bound on the total number of vertices just given
available storage. With that assumption, you can assume a
pool of vertices with appropriate starting probabilities in v.
This assumption is unnecessary in applications like seed set
expansion (local community detection) where v is sparse
and limited to existing vertices. “Deletion” of vertices has
repercussions beyond any simple kernel algorithm. Either all
auxiliary information associated with a deleted vertex needs
removed throughout a system along sufficient records to ensure
the vertex is not reincarnated accidentally, or the vertex lives on
although disconnected from the larger graph. The latter would
depress an absolute PageRank value but not alter relative values.

To cope with new vertices, we assume an infinite pool of
vertices with starting probabilities (entries in v) zero. Vertices
are “added” by connecting them to the rest of the graph, but this
does not update v. A similar analysis as above can compensate
for a ∆v term. The ∆v would be dense to preserve the right-
hand side’s one-norm unless v already is sparse. If v is sparse,
∆v is easily accommodated. For large graphs, however, the
perturbation would be tiny, from 1/|V| to 1/(1 + |V|) when
adding a single vertex. This may affect very long-running
kernels or kernels that tap into a live stream without a good
estimate for the number of vertices. If in the long run the
primary source of deleting vertices is aging out old information,
then the small differences in initial probabilities can balance
between the added and deleted vertices. We do not yet have
experience to guide decisions, so we defer the larger issue to
future work. Here are do not add vertices beyond the initial
data set.

III. ALGORITHMS AND IMPLEMENTATIONS

The PageRank and incremental PageRank algorithms are
implemented in our STINGER streaming graph analysis
framework[8]. STINGER is a multi-process framework that
maintains a graph snapshot in memory and ingests a graph
update stream in a server that triggers separate analysis kernels
sharing data via mmap on a RAM file system. Each process is
multi-threaded through OpenMP[9] directives, falling back to
standard C atomic operations for two operations in Figure 3.

STINGER’s graph server gathers input graph changes into a
batch, triggers a pre-update function in analysis kernels, updates
the stored graph, and then triggers a post-update function in
analysis kernels. The non-incremental PageRank routines use
only the post-update hook and are expressed in Figure 1. These
routines traverse the entire graph in every iteration and update
the entire output vector. The incremental PageRank routines
in Figure 2 return only the changes. The timing results in
Section IV also apply these sparse updates to the dense vector.
Computing the explicit change in the PageRank vector, useful
for later analysis, is not included in the full algorithms. The
operator preserves the one-norm in exact, so we need not
re-normalize too often when τ is relatively larger than the
computational precision.

The primary operation in the full-graph PageRank algorithms
is applying the sparse operator ATD−1 to a dense vector x and
accumulating into a dense vector y. STINGER’s representation
is row-major, so we iterate across the columns of ATD−1 and
scatter the vector updates. We are using unweighted PageRank
here, so each column i (applying a transpose) computes t =
xi/Dii, walks the neighbors j 6= i of i, and accumulates yj =
yj+t. Our initial implementation is not highly optimized. We do
not worry about the load imbalance from large degree vertices
and use simple OpenMP atomic floating-point updates. The
current STINGER data structure stores many other data items
in each cache line that are unused here, so wasted bandwidth is
a more important concern that affects all our implementations
equivalently.

pr_core (A, x(1), v)
Let D = diagonal matrix of vertex out-degrees
For k = 1 ... itmax

x(k+1) = αATD−1x(k) + (1− α)v
Stop if ‖x(k+1) − x(k)‖1 < τ

Return x(k+1)

pr (A, v)
Return pr_core(A, (1− α)v, v)

pr_restart (A, x, v)
Return pr_core(A, x, v)

Implicit parameters:
α : PageRank teleportation constant
τ : Convergence tolerance
itmax : Iteration maximum

Fig. 1. Algorithms for updating the entire PageRank vector either by
completely recomputing (pr) or starting from the previous PageRank vector
(pr_restart).

The core of the incremental algorithms is the same operation
but applied to a sparse vector x to accumulate into a sparse
output vector y. This operation involves fewer columns, only
those associated with the pattern of x, but rather more overhead
in tracking the pattern of y. Sparse vectors are stored in a
packed format of two arrays, indices and values, “shrink-
wrapped” to the length of the pattern. Before updating, the
vector values of y are scattered into a |V|-long dense vector,
so the numerical updates are scattered similarly as the above.
The pattern is copied into a |V|-long scratch vector and each
index’s location is scattered into another |V|-long dense vector.
Each thread scatters the numerical updates from column i
(transpose) and packs any new pattern entry into a thread-local
buffer. Once the buffer is full or the thread finishes, the pattern
is updated as sketched in Figure 3. After updating, y is re-
packed into a short vector, re-setting the scratch vectors to the
needed initial values only where changed. An alternative would
be a clever method of only incrementing a threshold rather
than clearing[10], but that complicates our atomic exchanges
of known place-holder values.

IV. RESULTS

The experimental results are intended to demonstrate that
the incremental updating algorithms achieve acceptable error
and traverse fewer graph edges. We also report timings, but
specific timing results can be changed drastically by platform-
specific optimizations as well as data structure reorganizations
that are not our current focus. Throughout the rest, we use
α = 0.85 and an arbitrary convergence threshold of τ =
2−17 = 128εs, were εs is the precision of the 32-bit binary
IEEE-754 format. Lower convergence thresholds would benefit
the restarted PageRank algorithm’s running time most but
risk delivering quite inaccurate results. We use γ = 16τ as
an arbitrary expansion threshold in the restricted expansion
algorithm dpr_held.

dpr_pre (A, x,∆)
Let D = diagonal matrix of vertex out-degrees
b = ATD−1x|∆
Return b

dpr_core (A, b, r,∆)
Let D = diagonal matrix of vertex out-degrees
b = α(ATD−1x|∆ − b)
∆x(1) = b+ r|b
For k = 1 ... itmax

∆x(k+1) = αATD−1∆x
(k)
|≥γ + α∆x

(k)
|<γ + b

∆x(k+1) = ∆x(k+1) + r|∆x(k+1)

Stop if ‖x(k+1) − x(k)‖1 < τ
∆r = b+ ∆x(k+1) − αATD−1∆x(k+1)

Return ∆x(k+1) and ∆r

dpr (A, b, r,∆) : Compute only the updates
γ = 0
∆x and ∆r = dpr_core (A, b, r,∆)
Return x+ ∆x and r + ∆r

dpr_held (A, b, r,∆) : Limit expansion
γ = 1+α

1−ατ

∆x and ∆r = dpr_core (A, b, r,∆)
Return x+ ∆x and r + ∆r

dpr_all (A, b, r) : Measure overhead
γ = 0
∆ = V
∆x and ∆r = dpr_core (A, b, r,∆)
Return x+ ∆x and r + ∆r

Additional implicit parameter:
γ : Per-element threshold for limiting expansion

Fig. 2. Algorithms for computing PageRank changes directly. Routine dpr
does not limit expansion, dpr_held applies a per-entry threshold to limit
expansion, and dpr_all computes over the entire vector rather than the
changes to measure overhead. Note that they each require the vector returned
by dpr_pre before altering the graph.

Our test platform is an Oracle X4470 M2 server using two
Intel Xeon E7-4820 processors with eight cores and two threads
per core running at a peak speed of 2GHZ. Each processor
has 18MiB of L3 cache and 256 MiB of 1066 MHZ DDR3
RAM. Here we bind the PageRank codes and all data to a
single NUMA node and run the random edge generation and
ingest on the other NUMA node. We also only run at most one
thread per core; we are more interested in latency than thread
scalability. The codes are compiled with gcc 5.3.1 and run on
a system running Linux kernel 4.3.0 but without automatic
transparent huge pages. Each experiment is run three times for
every number of threads tested (1, 2, 4, 6, 8), and experiments
are run in random order. For timings results, we select the
median time for each number of threads to avoid occasional
system noise.

The test graphs in Table I are selected arbitrarily from
the Tenth DIMACS Challenge archive[11] to span a variety
of sizes and application areas. The smaller graphs operate

Updated: Packed y pattern in ypatt, degree ydeg,
scattered pattern locations loc

Buffer: vertex indices in idx
S = 0
for k indexing the buffer

j = idxk
if atomic_compare_exchange(locj ,−1,−2)
S = S + 1 (successful)

else
idxk = −1

if S > 0
w = atomic_fetch_add(ydeg, S)
for k indexing the buffer
j = idxk
if j ≥ 0

locj = w (release)
ypattw = i
w = w + 1

clear the buffer

Fig. 3. Updating the scattered output vector’s pattern from the thread pattern
buffer. Threads claim new pattern locations by atomically swapping the default
−1 value with another negative value. The compare and exchance needs only
acquire-release ordering with a release on the successful store.

TABLE I
TEST GRAPHS. SIZE DENOTES THE DATA SIZE OF A TYPICAL PACKED

UNWEIGHTED CSR FORMAT USING 64-BIT INTEGERS. THE STINGER
REPRESENTATION IS LARGER.

Graph |V| |E| Avg. Degree Size (MiB)

belgium.osm 1441295 1549970 1.08 22.82
road map

caidaRouterLevel 192244 609066 3.17 5.38
networking

coPapersCiteseer 434102 16036720 36.94 124.01
citation

PGPgiantcompo 10680 24316 2.28 0.23
social network

power 4941 6594 1.33 0.07
power grid

entirely within L3 cache, potentially penalizing the incremental
algorithms’ performance. These graphs begin are essentially
undirected with every edge i → j having a corresponding
reverse edge j → i. We add directed edges, not reverse edge
pairs, by selecting pairs of vertices uniformly at random. All
runs use the same random seeds. We add edges in ten batches of
10, 100, and 1000 to examine possible low-latency performance.

Timing results here come with a large caveat: We have not
gone through the excruciating work of tuning these operators
through all the design points (atomic operations v. sorting and
merging, etc.) and their parameters. Our implementations are
reasonably readable and portable. This algorithm may be an
excellent target for the GraphBLAS effort [12]. The times for
the incremental algorithms also includes updating the dense
PageRank vector. We do not include computing the incremental
change from the dense vector in the restarted PageRank times.

That said, Table II shows the best update times achieved

TABLE II
BEST UPDATE TIME IN SECONDS FOR THE INCREMENTAL ALGORITHMS DPR

AND DPR_HELD AS WELL AS RESTARTED PAGERANK PR_RESTART . THE
TIMING EXPERIMENTS HAVE A FEW NON-REPRODUCIBLE OUTLIERS, SO

USE THE MEDIAN TIME FOR EACH NUMBER OF THREADS. THE SPEED-UP OF
INCREMENTAL TIME OVER RESTARTED PAGERANK TIME IS PROVIDED.

Graph Batch dpr dpr_held pr_restart

belgium.osm 10 .0118 42× .0128 39× .498
100 .0127 39× .0131 38× .499

1000 .0461 52× .0171 140× 2.41
caidaRouterLevel 10 .00710 16× .00199 57× .112

100 .0314 7.1× .00477 47× .224
1000 1.30 .68× .2290 3.9× .889

coPapersCiteseer 10 .0729 27× .0128 155× 1.98
100 .8650 2.3× .130 15× 1.98

1000 2.97 1.3× 1.13 3.5× 3.95
PGPgiantcompo 10 .00211 4.3× .00023 39× .00916

100 .0257 .81× .00874 2.4× .0207
1000 .0372 .67× .0341 .73× .0249

power 10 .00304 1.8× .00008 68× .00535
100 .0109 .79× .00707 1.2× .00860

1000 .0126 .67× .0124 .68× .00843

TABLE III
THE FRACTION OF GRAPH EDGES TRAVERSED BY EACH ALGORITHM.

INCREMENTAL ALGORITHMS ALSO SHOW THE IMPROVEMENT OF EDGES
TRAVERSED OVER RESTARTED PAGERANK.

Graph Batch dpr dpr_held pr_restart

belgium.osm 10 0.00020 9800× 0.00007 30000× 2
100 0.00203 990× 0.00066 3000× 2

1000 0.120 84× 0.00660 1500× 10
caidaRouterLevel 10 0.0625 32× 0.00252 790× 2

100 0.409 9.8× 0.0301 130× 4
1000 15.2 1.1× 3.07 5.2× 16

coPapersCiteseer 10 0.0563 36× 0.00646 310× 2
100 0.689 2.9× 0.0952 21× 2

1000 2.32 1.7× 0.864 4.6× 4
PGPgiantcompo 10 1.58 5.1× 0.0453 180× 8

100 21.3 1.1× 6.82 3.6× 24
1000 31.2 1.0× 28.4 1.1× 32

power 10 7.54 2.4× 0.0229 790× 18
100 29.2 1.2× 18.2 1.9× 34

1000 38.3 1.0× 37.1 1.0× 39

regardless of the number of threads. The restarted PageRank
implementation scales well; all its best times occur with
eight threads. The incremental algorithms often achieve best
performance with two or four threads. There is less work
to perform. Table III shows the number of edges traversed
normalized by the number in the updated graph. For the
restarted PageRank algorithm pr_restart this is equivalent
to the number of iterations needed to converge.

Updating a large fraction of the graph finds no real advantage
to the incremental algorithms. Updating only a small portion
of the graph, however, leads to drastic improvements in both
unoptimized time and the number of edges traversed. The
limited expansion algorithm dpr_held sometimes requires
more iterations to converge for some graphs and at larger batch
sizes. Further analysis is needed to determine an adaptive
restriction threshold γ.

To check any additional error incurred by partial updates over
restarting PageRank, we also compute a PageRank vector from
scratch at every batch update and consider that a gold standard

(pr in Figure 1). The from-scratch computation uses the same
precision and convergence thresholds, so it is not necessarily
a better approximation of the true solution. We then compute
the one-norm difference between the solutions achieved by
dpr, dpr_held, and pr_restart and the from-scratch
PageRank. Figure 4 shows the ratio of these differences
comparing each incremental algorithm to the restarted iteration.
In general, the incremental algorithms achieve results relatively
close to the from-scratch computation. There are a few bizarre
exceptions still being investigated, like the massive divergence
in belgium.osm for batches of 100 edge insertions and dpr.
The difference growth for dpr_held is not unexpected given
the present rudimentary thresholding. The ratios of the residuals’
one-norms, the backward errors, behaves similarly, including
the occasional odd behavior.

V. GUIDANCE FOR THE GRAPHBLAS

These incremental algorithms for a linear algebra problem
on streaming graph data can be expressed using the kinds of
operations to be supported in the GraphBLAS. However, the
incremental algorithms rely heavily on sparse vectors. Their
implementation can carry quite a bit of performance overhead,
and that overhead can increase the latency of an update. Much
of the GraphBLAS effort is focused on easily expressing
some graph algorithms with the idea that the complete graph
traversals will be the primary performance bottleneck. We
are interested in small updates that do not have the time to
traverse much of the graph and so have different requirements
for reasonable performance.

Many API proposals would seem to separate the sparse vector
operations in Equation (3). Producing another scaled sparse
vector D−1∆x and then applying AT could be a significant
performance hit from copying the pattern and location look-up
arrays. Separating ∆x into different vectors ∆x̃H and ∆x̃X
from ∆x would almost certainly incur too much overhead
compared to a threshold test within the matrix-vector product.
Also, most APIs that expose sparse vectors as an opaque type
lose quite a few simple, common optimizations. Our dpr and
dpr_held implementations only extend the pattern of ∆x
between iterations. This does not require copying the pattern
and location arrays but merely modifying them. Subtracting
∆x(k+1) − ∆x(k) to test against τ needs subtract only over
pattern of ∆x(k), and that is the prefix of the pattern of ∆x(k+1)

when stored un-sorted. This can be a significant optimization
in the termination test run every loop. Even worse, some APIs
try to hide any difference between sparse and dense vectors,
adding even more overhead in the common streaming cases.

To summarize, the algorithms dpr and dpr_held here
need the following features for fast, low-latency operation:

• efficient sparse vector operations that can share the pattern
and location arrays across multiple vectors / iterations,

• fused scaling and dynamic masking operations within the
matrix-vector product loop, and

• matrix-vector products that support unweighted (implicitly
unit weight) graphs and floating-point vectors.

10 100 1000

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ●

●
● ● ● ●

●
● ●

●
●

●
● ● ● ●

●
● ●

●
●

●
● ● ● ●

●
● ●

●
●

●
● ● ● ●

●
● ●

●
●

●
● ● ● ●

●
● ●

●
●

●
● ● ● ●

●
● ●

●
●

●
● ● ● ●

●
● ●

●
●

●
● ● ● ●

●
● ●

●
●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

●
●

●
● ● ● ● ● ●

●

●
●

●
● ● ● ● ● ●

●

●
●

●
● ● ● ● ● ●

●

●
●

●
● ● ● ● ● ●

●

●
●

●
● ● ● ● ● ●

●

●
●

●
● ● ● ● ● ●

●

●
●

●
● ● ● ● ● ●

●

●
●

●
● ● ● ● ● ●

●
●

●
●

●
●

● ●

●
●●

●
●

●
●

●
● ●

●
●●

●
●

●
●

●
● ●

●
●●

●
●

●
●

●
● ●

●
●●

●
●

●
●

●
● ●

●
●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

●
● ● ●

●
●

●
●

● ●

●
● ● ●

●
●

●
●

● ●

●
● ● ●

●
●

●
●

● ●

●
● ● ●

●
●

●
●

● ●

●
● ● ●

●
●

●
●

● ●

●
● ● ●

●
●

●
●

● ●

● ● ●
●

●
●

●
●

●
●

● ● ●
●

●
●

●
●

●
●

● ● ●
●

●
●

●
●

●
●

● ● ●
●

●
●

●
●

●
●

● ● ●
●

●
●

●
●

●
●

● ●
● ● ● ● ● ●

● ●● ●
● ● ● ● ● ●

● ●● ●
● ● ● ● ● ●

● ●● ●
● ● ● ● ● ●

● ●● ●
● ● ● ● ● ●

● ●● ●
● ● ● ● ● ●

● ●● ●
● ● ● ● ● ●

● ●● ●
● ● ● ● ● ●

● ●● ●
● ● ● ● ● ●

● ●

●
● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

0

100

200

300

2.5

5.0

7.5

0.0

0.5

1.0

1.5

2.0

0

2

4

6

0

5

10

15

b
e
lg

iu
m

.o
s
m

c
a
id

a
R

o
u
te

rL
e
ve

l
c
o
P

a
p
e
rs

C
ite

s
e
e
r

P
G

P
g
ia

n
tc

o
m

p
o

p
o
w

e
r

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Batch

R
a
ti
o
 o

f
in

c
re

m
e
n
ta

l
d
if
fe

re
n
c
e
 t
o
 r

e
s
ta

rt
e
d
 d

if
fe

re
n
c
e

Alg. ● dpr dprheld

Fig. 4. Ratio of the one-norm differences in PageRank vectors compared to from-scratch recomputation. The incremental algorithms generally compute a
result close to restarted PageRank with a few odd and unexpected results.

Note that our algorithms above never use the number of
vertices |V| explicitly but only implicitly through v when
computing a general, non-personalized PageRank. Section II-A
discusses some options for continuing to ignore |V|.

VI. RELATED WORK

Trying to cover all the work related to computing PageRank
is a massive unstructured data mining problem in itself. We
compare only with work on updating PageRank, and likely
this is only a subset. Every unpublished presentation of these
algorithms so far have been accompanied by a plea for existing
equivalent work to no response. That these algorithms have
little value for updates large relative to the initial graph may
be why they are not yet published. Or perhaps it’s that no one
will agree on how to capitalize PageRank.

Langville and Meyer [13] consider updating the eigenvalue
formulation of PageRank and update the PageRank vector

using the power method while summarizing unaffected regions
through projection, reducing the matrix dimension to one more
than the change size. This method requires re-projecting the
matrix as the affected portion grows or starting with a larger
region than just the changes. The projection requires accessing
the entire graph or using clumped approximation. Convergence
depends on the second largest (in magnitude) eigenvalue[14].
Langville and Meyer’s method extends to general Markov
chains[15].

Bahmani, Chowdhury, and Goel [16] incrementally update
PageRank and other random walk metrics by maintaining a
database of sampled paths. The number of paths necessary is
inversely proportional to the estimation error. This method can
be useful for finding the largest ranked entries, but tracking
smaller entries on the fringe of an region defined by a very
sparse seed or personalization vector will be indistinguishable.
Large estimation errors may produce output that is not useful

for later analysis like anomaly detection. Bahmani, et al. extend
the method to updating PageRank without knowing the graph
changes explicitly[17]. In their context, a distributed web crawl
is being updated by some process that does not communicate
changes to the PageRank computation. Randomly sampling
paths from the graph periodically can achieve reasonably small
errors on small graphs, but limited sampling may miss notable
changes in a massive graph.

Ohsaka, et al. [18] present a nearly equivalent algorithm for
updating PageRank coming from the statistical direction. The
primary difference is that Ohsaka, et al.’s update equations
focus on the residual and do not include the first term in
Equation (3), αAT∆D

−1
∆ ∆x(k), but rather directly add the

residual to the changed component of x. This paper also
contains intriguing data on time to converge using their
incremental algorithm for initial computation that may reflect
on tapping into a live data stream. Combining their analysis
with our algorithm could prove very fruitful and may produce
better criteria for limiting expansion in dpr_held.

Gleich and Polito [19] provide a static personalized PageR-
ank algorithm that limits the amount of graph data used.
Because our algorithm for computing the incremental update
is a personalized PageRank problem, Gleich and Polito’s
boundary-restricted version may provide a method for further
limiting the change area.

VII. CONCLUSION

Our algorithms in Section III essentially apply iterative
refinement to maintain a PageRank vector through sparse
refinement on a streaming graph. The incremental algorithms
produce the update directly while traversing only a limited
amount of the total graph, from traversing only slightly fewer
edges with many scattered changes to thousands fewer when
only ten edges are inserted. This can translate into hundred-fold
speed ups over restarting an iterative PageRank solver. A few
unexplained performance and accuracy oddities remain and are
under investigation. The incremental algorithms in Figure 2
could benefit from an efficient implementation of the upcoming
GraphBLAS API but needs methods to reduce overhead in
sparse vector manipulation.

Iterative refinement is an application of Newton’s method
to linear systems Ax = b and generalizes in theory to any
numerical refinement procedure. Only linear systems so far
provide the fast, non-dense refinement algorithms suitable for
massive graph analysis. Spectral clustering notably may not
benefit from similar sparse refinement to track streaming graphs.
Techniques for eigenvalue problems use factored forms like
the Schur decomposition [20] and are not suitable for massive
graph analysis. Methods combining linear combinations of
eigenvectors [21] with subspace tracking may be more fruitful.

ACKNOWLEDGMENT

The work depicted in this paper was partially sponsored by
Defense Advanced Research Projects Agency (DARPA) under
agreement #HR0011-13-2-0001. The content, views and conclu-
sions presented in this document do not necessarily reflect the

position or the policy of DARPA or the U.S. Government, no
official endorsement should be inferred. Distribution Statement
A: “Approved for public release; distribution is unlimited.”
This work was also partially sponsored by NSF Grant ACI-
1339745 (XScala). We thank Oracle for the hardware platform
and reviewers for their careful attention to detail, relevant
references, and useful suggestions.

REFERENCES

[1] L. Page, S. Brin, R. Motwani, and T. Winograd, “The
PageRank citation ranking: Bringing order to the web,”
Stanford Digital Library Technologies Project, Stanford
University, Stanford, CA, USA, Tech. Rep., Nov. 1998,
p. 17.

[2] D. F. Gleich, “PageRank beyond the web,” SIAM Review,
vol. 57, no. 3, pp. 321–363, 2015. DOI: 10 . 1137 /
140976649.

[3] J. J. Whang, D. F. Gleich, and I. S. Dhillon, “Overlapping
community detection using seed set expansion,” in CIKM,
Q. He, A. Iyengar, W. Nejdl, J. Pei, and R. Rastogi, Eds.,
ACM, 2013, pp. 2099–2108, ISBN: 978-1-4503-2263-8.

[4] E. J. Riedy and D. A. Bader, “Multithreaded community
monitoring for massive streaming graph data,” in 7th
Workshop on Multithreaded Architectures and Applica-
tions (MTAAP), Boston, MA, May 2013. DOI: 10.1109/
IPDPSW.2013.229.

[5] D. Gleich, L. Zhukov, and P. Berkhin, “Fast parallel
PageRank: A linear system approach,” Yahoo! Research,
Tech. Rep. YRL-2004-038, 2004, p. 22.

[6] G. M. Del Corso, A. Gull, and F. Romani, “Fast
PageRank computation via a sparse linear system,”
Internet Math., vol. 2, no. 3, pp. 251–273, 2005.

[7] N. J. Higham, “Iterative refinement for linear systems
and LAPACK,” IMA J. Numer. Anal., vol. 17, no. 4,
pp. 495–509, 1997.

[8] D. Ediger, R. McColl, J. Riedy, and D. A. Bader,
“STINGER: High performance data structure for stream-
ing graphs,” in The IEEE High Performance Extreme
Computing Conference (HPEC), Best paper award,
Waltham, MA, Sep. 2012. DOI: 10.1109/HPEC.2012.
6408680.

[9] OpenMP Architecture Review Board, OpenMP applica-
tion program interface version 4.0, Jul. 2013.

[10] T. A. Davis, “Algorithm 832: UMFPACK V4.3 - an
unsymmetric-pattern multifrontal method,” ACM Trans.
Math. Softw, vol. 30, no. 2, pp. 196–199, 2004.

[11] D. A. Bader, A. Kappes, H. Meyerhenke, P. Sanders, C.
Schulz, and D. Wagner, “Encyclopedia of social network
analysis and mining,” in. Springer, 2014, ch. Benchmark-
ing for Graph Clustering and Partitioning, pp. 73–82.

[12] J. Kepner, D. A. Bader, A. Buluç, J. R. Gilbert, T.
G. Mattson, and H. Meyerhenke, “Graphs, matrices,
and the GraphBLAS: Seven good reasons,” CoRR, vol.
abs/1504.01039, 2015.

[13] A. N. Langville and C. D. Meyer, “Updating Pagerank
with iterative aggregation,” in Proceedings of the 13th
International World Wide Web Conference on Alternate
Track Papers &Amp; Posters, ser. WWW Alt. ’04, New
York, NY, USA: ACM, 2004, pp. 392–393, ISBN: 1-
58113-912-8. DOI: 10.1145/1013367.1013491.

[14] I. C. F. Ipsen and S. Kirkland, “Convergence analysis of
a PageRank updating algorithm by Langville and Meyer,”
SIAM Journal on Matrix Analysis and Applications,
vol. 27, no. 4, pp. 952–967, 2006. DOI: 10 . 1137 /
S0895479804439808.

[15] A. N. Langville and C. D. Meyer, “Updating Markov
chains,” in Proceedings of the Markov Anniversary
Meeting, Boson Press, 2006.

[16] B. Bahmani, A. Chowdhury, and A. Goel, “Fast in-
cremental and personalized PageRank,” Proc. VLDB
Endow., vol. 4, no. 3, pp. 173–184, Dec. 2010, ISSN:
2150-8097. DOI: 10.14778/1929861.1929864.

[17] B. Bahmani, R. Kumar, M. Mahdian, and E. Upfal,
“PageRank on an evolving graph,” in Proceedings of
the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’12,

Beijing, China: ACM, 2012, pp. 24–32, ISBN: 978-1-
4503-1462-6. DOI: 10.1145/2339530.2339539.

[18] N. Ohsaka, T. Maehara, and K.-i. Kawarabayashi, “Ef-
ficient PageRank tracking in evolving networks,” in
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
ser. KDD ’15, Sydney, NSW, Australia: ACM, 2015,
pp. 875–884, ISBN: 978-1-4503-3664-2. DOI: 10.1145/
2783258.2783297.

[19] D. Gleich and M. Polito, “Approximating personalized
PageRank with minimal use of web graph data,” Internet
Mathematics, vol. 3, no. 3, pp. 257–294, 2006. DOI:
10.1080/15427951.2006.10129128.

[20] K. E. Prikopa and W. N. Gansterer, “On mixed precision
iterative refinement for eigenvalue problems,” in ICCS, H.
D. Pfeiffer, D. I. Ignatov, J. Poelmans, and N. Gadiraju,
Eds., ser. Lecture Notes in Computer Science, vol. 18,
Elsevier, 2013, pp. 2647–2650, ISBN: 978-3-642-35785-
5; 978-3-642-35786-2.

[21] J. P. Fairbanks, G. D. Sanders, and D. A. Bader, “Spectral
partitioning with blends of eigenvectors,” CoRR, vol.
abs/1510.04658, 2015.

